Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil

Abstract

Flow control experiments on a NACA 0015 airfoil using pulsed vortex generator jets (PVGJs) are carried out at a chord-based Reynolds number of \(4.6 \times 10^5\). Configurations of partially separated flow over the airfoil are studied with a special focus on the transient effects induced by actuation. The main objective is the improvement of the rate of variation of the aerodynamic loads. The response to a single-pulse actuation, of duration smaller than the convective time over the airfoil, is compared with the response to the onset of steady blowing. We observe that the single-pulse actuation, if correctly tuned, induces a higher rate of loads variation (up to 50 \(\%\) for the lift). By using Lagrangian analyzing tools (finite-time Lyapunov exponent—FTLE), we show that this improvement is due to dynamical effects at the scale of the airfoil, associated with the formation of a closed separation region during the initial transient phase after the end of actuation. Such load control could be effective in situations where a fast time response is needed to compensate unsteady aerodynamic effects, such as in gusting flows or during rapid maneuvers.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Acheson D (1990) Elementary fluid dynamics. Oxford University Press, New York

    Google Scholar 

  2. Amitay M, Glezer A (2002) Controlled transients of flow reattachment over stalled airfoils. Int J Heat Fluid Fl 23(5):690–699. https://doi.org/10.1016/S0142-727X(02)00165-0

    Article  Google Scholar 

  3. Amitay M, Glezer A (2006) Aerodynamic flow control using synthetic jet actuators. In: Koumoutsakos P, Mezic I (eds) Control of fluid flow. Lecture Notes in Control and Information Sciences (330). Springer, Berlin, Heidelberg, pp 45-73. https://doi.org/10.1007/978-3-540-36085-8_2

  4. Amitay M, Smith D, Douglas R, Kibens V, Parekh DE, Glezer A (2001) Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J 39(3):361–370. https://doi.org/10.2514/2.1323

    Article  Google Scholar 

  5. Anderson JD (1991) Fundamentals of aerodynamics. McGraw-Hill, New York

    Google Scholar 

  6. Brzozowski DP, Woo GTK, Culp JR, Glezer A (2010) Transient separation control using pulse-combustion actuation. AIAA J 48(11):2482–2490. https://doi.org/10.2514/1.45904

    Article  Google Scholar 

  7. Cattafesta LN, Sheplak M (2011) Actuators for active flow control. Annu. Rev. 43:247–272. https://doi.org/10.1146/annurev-fluid-122109-160634

    Article  MATH  Google Scholar 

  8. Compton DA, Johnston JPM (1992) Streamwise vortex production by pitched and skewed jets in a turbulent boundary layer. AIAA J 30(3):640–647. https://doi.org/10.2514/3.10967

    Article  Google Scholar 

  9. Darabi A, Wygnanski I (2004) Active management of naturally separated flow over a solid surface. Part 1. The forced reattachment process. J Fluid Mech. 510:105–129. https://doi.org/10.1017/S0022112004009231

    Article  MATH  Google Scholar 

  10. Fiedler HE (1998) Control of free turbulent shear flows. In: Gad-el-Hak M, Pollard A, Bonnet JP (eds) Lecture Notes in Physics (New Series m: Monographs) (53) Springer, Berlin, Heidelberg, pp 335-429. https://doi.org/10.1007/3-540-69672-5_6

  11. Gad-el-Hak M (2007) Flow control: passive, active, and reactive flow management. Cambridge University Press. https://doi.org/10.1017/CBO9780511529535

  12. Gao C, Zhang W, Kou J, Liu Y, Ye Z (2017) Active control of transonic buffet flow. J Fluid Mech 824:312–351. https://doi.org/10.1017/jfm.2017.344

    MathSciNet  Article  MATH  Google Scholar 

  13. Garth C, Li G, Tricoche X, Hansen CD, Hagen H (2009) Visualization of coherent structures in transient 2d flows. In: Hege HC, Polthier K, Scheuermann G (eds) Topology-Based Methods in Visualization II. Springer, Berlin, Heidelberg, pp 1-13. https://doi.org/10.1007/978-3-540-88606-8_1

  14. Gilarranz J, Traub L, Rediniotis O (2005) A new class of synthetic jet actuators–part II: application to flow separation control. J Fluids Eng 127(2):377–387. https://doi.org/10.1115/1.1882393

    Article  Google Scholar 

  15. Greenblatt D, Wygnanski I (2000) The control of flow separation by periodic excitation. Prog Aerosp Sci 36(7):487–545. https://doi.org/10.1016/S0376-0421(00)00008-7

    Article  Google Scholar 

  16. Greenblatt D, Wygnanski I (2001) Dynamic stall control by periodic excitation, Part 1: NACA 0015 parametric study. J Aircr 38(3):430–438. https://doi.org/10.2514/2.2810

    Article  Google Scholar 

  17. Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149(4):248–277. https://doi.org/10.1016/S0167-2789(00)00199-8

    MathSciNet  Article  MATH  Google Scholar 

  18. Johnston JP, Nishi M (1990) Vortex generator jets-means for flow separation control. AIAA J 28(6):989–994. https://doi.org/10.2514/3.25155

    Article  Google Scholar 

  19. Khan ZU, Johnston JP (2000) On vortex generating jets. Int J Heat Fluid Fl 21(5):506–511. https://doi.org/10.1016/S0142-727X(00)00038-2

    Article  Google Scholar 

  20. Lombardi AJ, Bowles PO, Corke TC (2013) Closed-loop dynamic stall control using a plasma actuator. AIAA J 51(5):1130–1141. https://doi.org/10.2514/1.J051988

    Article  Google Scholar 

  21. McManus K, Legner H, Davis S (1994) Pulsed vortex generator jets for active control of flow separation. In: Fluid Dynamics Conference. AIAA 1994, pp 2218. https://doi.org/10.2514/6.1994-2218

  22. Milanovic IM, Zaman KB (2004) Fluid dynamics of highly pitched and yawed jets in crossflow. AIAA J 42(5):874–882. https://doi.org/10.2514/1.2924

    Article  Google Scholar 

  23. Molton P, Dandois J, Lepage A, Brunet V, Bur R (2013) Control of buffet phenomenon on a transonic swept wing. AIAA J 51(4):761–772. https://doi.org/10.2514/1.J051000

    Article  Google Scholar 

  24. Pauley WR, Eaton JK (1988) Experimental study of the development of longitudinal vortex pairs embedded in a turbulent boundary layer. AIAA J 26(7):816–823. https://doi.org/10.2514/3.9974

    Article  Google Scholar 

  25. Ruiz T, Borée J, Tran T, Sicot C, Brizzi LE (2010) Finite time Lagrangian analysis of an unsteady separation induced by a near wall wake. Phys Fluids 22(7):75–103. https://doi.org/10.1063/1.3459154

    Article  MATH  Google Scholar 

  26. Sciacchitano A, Wieneke B (2016) PIV uncertainty propagation. Meas Sci Technol 27(8):084006. https://doi.org/10.1088/0957-0233/27/8/084006

    Article  Google Scholar 

  27. Seifert A, Bachar T, Koss D, Shepshelovich M, Wygnanski I (1993) Oscillatory blowing: a tool to delay boundary-layer separation. AIAA J 31(11):2052–2060. https://doi.org/10.2514/3.49121

    Article  Google Scholar 

  28. Seifert A, Darabi A, Wygnanski I (1996) Delay of airfoil stall by periodic excitation. J Aircr 33(4):691–698. https://doi.org/10.2514/3.47003

    Article  Google Scholar 

  29. Shadden SC, Dabiri JO, Marsden JE (2006) Lagrangian analysis of fluid transport in empirical vortex ring flows. Phys Fluids 18(4):047105. https://doi.org/10.1063/1.2189885

    MathSciNet  Article  MATH  Google Scholar 

  30. Siauw WL (2008) Transient process of separation and attachment over a NACA 0015 airfoil controlled by fluidic vortex generators. Dissertation, Université de Poitiers

  31. Siauw WL, Bonnet JP (2017) Transient phenomena in separation control over a NACA 0015 airfoil. Int J Heat Fluid Fl 67:23–29. https://doi.org/10.1016/j.ijheatfluidflow.2017.03.008

    Article  Google Scholar 

  32. Theodorsen T (1934) General theory of aerodynamic instability and the mechanism of flutter. NACA, Tech Rep 496:413–433. https://doi.org/10.1016/s0016-0032

    Article  MATH  Google Scholar 

  33. Williams DR, King R (2018) Alleviating unsteady aerodynamic loads with closed-loop flow control. AIAA J 56(6):2194–2207. https://doi.org/10.2514/1.J056817

    Article  Google Scholar 

  34. Woo GTK, Glezer A (2013) Controlled transitory stall on a pitching airfoil using pulsed actuation. Exp Fluids 54(6):1507. https://doi.org/10.1007/s00348-013-1507-5

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Direction Générale de l’Armement (DGA) and the CPER FEDER project of Région Nouvelle Aquitaine. The authors gratefully acknowledge the valuable technical support of Jean-Marc Breux, François Paille, Patrick Braud, Romain Bellanger, Bastien Robert, and Mathieu Rossard during the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Armando Carusone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carusone, A., Sicot, C., Bonnet, JP. et al. Transient dynamical effects induced by single-pulse fluidic actuation over an airfoil. Exp Fluids 62, 25 (2021). https://doi.org/10.1007/s00348-020-03108-0

Download citation