Time-resolved large-scale volumetric pressure fields of an impinging jet from dense Lagrangian particle tracking

  • F. Huhn
  • D. Schanz
  • P. Manovski
  • S. Gesemann
  • A. Schröder
Research Article

Abstract

Time-resolved volumetric pressure fields are reconstructed from Lagrangian particle tracking with high seeding concentration using the Shake-The-Box algorithm in a perpendicular impinging jet flow with exit velocity \(U=4\) m/s (\(Re\sim 36,000\)) and nozzle-plate spacing \(H/D=5\). Helium-filled soap bubbles are used as tracer particles which are illuminated with pulsed LED arrays. A large measurement volume has been covered (cloud of tracked particles in a volume of 54 L, \(\sim 180,000\) particles). The reconstructed pressure field has been validated against microphone recordings at the wall with high correlation coefficients up to 0.88. In a reduced measurement volume (13 L), dense Lagrangian particle tracking is shown to be feasable up to the maximal possible jet velocity of \(U=16\) m/s.

Notes

Acknowledgements

The authors would like to thank Janos Agocs, Stefan Haxter, Thomas Ahlefeldt, Dirk Michaelis, Uwe Dierksheide and Jiggar Shah for their help during the setup and execution of the experiment. We acknowledge the support of LaVision GmbH with camera equipment and the seeding generator. Work including the experimental results has partly been funded by the DFG-project Analyse turbulenter Grenzschichten mit Druckgradient bei großen Reynoldszahlen mit hochauflösenden Vielkameramessverfahren (Grant KA 1808/14-1 and SCHR 1165/3-1).

Supplementary material

348_2018_2533_MOESM1_ESM.txt (2 kb)
Supplementary material 1 (TXT 2 kb)
348_2018_2533_MOESM2_ESM.png (47 kb)
Supplementary material 2 (PNG 46 kb)

Supplementary material 3 (MP4 9198 kb)

348_2018_2533_MOESM4_ESM.avi (14.2 mb)
Supplementary material 4 (AVI 14567 kb)
348_2018_2533_MOESM5_ESM.avi (33 mb)
Supplementary material 5 (AVI 33835 kb)
348_2018_2533_MOESM6_ESM.avi (23.3 mb)
Supplementary material 6 (AVI 23885 kb)
348_2018_2533_MOESM7_ESM.avi (15.6 mb)
Supplementary material 7 (AVI 15982 kb)
348_2018_2533_MOESM8_ESM.avi (19.5 mb)
Supplementary material 8 (AVI 19924 kb)

References

  1. Bosbach J, Kühn M, Wagner C (2009) Large scale particle image velocimetry with helium filled soap bubbles. Exp Fluids 46:539–547CrossRefGoogle Scholar
  2. Bellani G, Byron ML, Collignon AG (2012) Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J Fluid Mech 712:41–60MathSciNetCrossRefMATHGoogle Scholar
  3. Caridi GCA, Ragni D, Sciacchitano A, Scarano F (2016) HFSB-seeding for large-scale tomographic PIV in wind tunnels. Exp Fluids 57:190CrossRefGoogle Scholar
  4. Carlomagno GM, Ianiro A (2014) Thermo-fluid-dynamics of submerged jets impinging at short nozzle-to-plate distance: a review. Exp Therm Fl Sci 58:15–35CrossRefGoogle Scholar
  5. Dairay T, Roux S, Fortuné S, Brizzi L (2016) On the capability of piv-based wall pressure estimation for an impinging jet flow. Flow Turbul Combust 96:667CrossRefGoogle Scholar
  6. de Kat R, van Oudheusden BW (2012) Instantaneous planar pressure determination from PIV in turbulent flow. Exp Fluids 52:1089–1106CrossRefGoogle Scholar
  7. Gesemann S, Huhn F, Schanz D, Schröder A (2016) From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties, 18th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  8. Ghaemi S, Ragni D, Scarano F (2012) PIV-Based pressure fluctuations in the turbulent boundary layer. Exp Fluids 53:1832–1840CrossRefGoogle Scholar
  9. Goody M (2004) Empirical Spectral Model of Surface Pressure Fluctuations. AIAA J 42:1788–1794CrossRefGoogle Scholar
  10. Guerra DRS, Su J, Silva Freire AP (2005) The near wall behavior of an impinging jet. Int J Heat Mass Trans 48:2829–2840CrossRefGoogle Scholar
  11. Hall JW, Ewing D (2006) On the dynamics of the large-scale structures in round impinging jets. Exp Therm Fluid Sci 13:364–373MATHGoogle Scholar
  12. Huhn F, Schanz D, Gesemann S, Schröder A (2016) FFT integration of instantaneous 3D pressure gradient fields measured by Lagrangian particle tracking in turbulent flows. Exp Fluids 57:151CrossRefGoogle Scholar
  13. Huhn F, Schanz D, Gesemann S, Dierksheide U, van de Meerendonk R, Schröder A (2017) Large-scale volumetric flow measurement in a pure thermal plume by dense tracking of helium-filled soap bubbles. Exp Fluids 58:116CrossRefGoogle Scholar
  14. Jeon YJ, Earl T, Braud P, Chatellier L, David L (2015) 3D pressure field around an inclined airfoil by tomographic TR-PIV and its comparison with direct pressure measurements, 18th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  15. Kähler CJ, Astarita T, Vlachos PP, Sakakibara J, Hain R, Discetti S, La Foy R, Cierpka C (2016) Main results of the 4th International PIV Challenge. Exp Fluids 57:97CrossRefGoogle Scholar
  16. Kim J (1989) On the Structure of Pressure Fluctuations in Simulated Turbulent Channel Flow. NASA Tech. MemGoogle Scholar
  17. Krishna S (2012) Characterization of the flow field in circular subsonic impinging jets. Master Thesis. Faculty of Aerospace Engineering, TU DelftGoogle Scholar
  18. Kühn M, Ehrenfried K, Bosbach J, Wagner C (2011) Large-scale tomographic particle image velocimetry using helium-filled soap bubbles. Exp Fluids 50:929–948CrossRefGoogle Scholar
  19. Landreth CC, Adrian RJ (1990) Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence. Exp Fluids 9:74–84CrossRefGoogle Scholar
  20. Neeteson NJ, Bhattacharya S, Rival DE, Michaelis D, Schanz D, Schröder A (2016) Pressure-field extraction from Lagrangian flow measurements: first experiences with 4D-PTV data. Exp Fluids 57:102CrossRefGoogle Scholar
  21. Novara M, Scarano F (2013) A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp Fluids 54:1584CrossRefGoogle Scholar
  22. Novara M, Schanz D, Reuther N, Kähler CJ, Schröder A (2016) Lagrangian 3D particle tracking in high-speed flows: shake-the-box for multi-pulse systems. Exp Fluids 57:128CrossRefGoogle Scholar
  23. van Oudheusden BW (2013) PIV-based pressure measurement. Meas Sci Technol 24:032001CrossRefGoogle Scholar
  24. Peper F, Leiner W, Fiebig M (1997) Impinging radial and inline jets: a comparison with regard to heat transfer, wall pressure distribution, and pressure loss. Exp Therm Fluid Sci 14:194–204CrossRefGoogle Scholar
  25. Pröbsting S, Scarano F, Bernardini M, Pirozolli S (2013) On the estimation of wall pressure coherence using time-resolved tomographic PIV. Exp Fluids 54:1567CrossRefGoogle Scholar
  26. Rival D, van Oudheusden BW (2017) Load-estimation techniques for unsteady incompressible flows. Exp Fluids 58:20CrossRefGoogle Scholar
  27. Scarano F, Ghaemi S, Caridi GCA, Bosbach J, Dierksheide U, Sciacchitano A (2015) On the use of helium-filled soap bubbles for large-scale tomographic PIV in wind tunnel experiments. Exp Fluids 56:42CrossRefGoogle Scholar
  28. Schanz D, Schröder A, Gesemann S, Michaelis D, Wieneke B (2013a) Shake-the-Box: a highly efficient and accurate Tomographic Particle Tracking Velocimetry (TOMO-PTV) method using prediction of particle position, 10th Int. Symposium on Particle Image Velocimetry—PIV13 (Delft, The Netherlands, July 1-3)Google Scholar
  29. Schanz D, Gesemann S, Schröder A, Wieneke B, Novara M (2013b) Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas Sci Technol 24:024009CrossRefGoogle Scholar
  30. Schanz D, Schröder A, Gesemann S (2016) Shake-The-Box: Lagrangian particle tracking at high particle image densities. Exp Fluids 57:70CrossRefGoogle Scholar
  31. Schanz D, Huhn F, Gesemann S, Dierksheide U, van de Meerendonk R, Manovski P, Schröder A (2016) Towards high-resolution 3D flow field measurements at cubic meter scales, 18th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  32. Schneiders JFG, Caridi GCA, Sciacchitano A, Scarano F (2016a) Large-scale volumetric pressure from tomographic PTV with HFSB tracers. Exp Fluids 57:164CrossRefGoogle Scholar
  33. Schneiders JFG, Pröbsting S, Dwight RP, van Oudheusden BW, Scarano F (2016b) Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer. Exp Fluids 57:53CrossRefGoogle Scholar
  34. Schröder A, Geisler R, Staack K, Elsinga GE, Scarano F, Wieneke B, Henning A, Poelma C, Westerweel J (2011) Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp Fluids 50:1071–1091CrossRefGoogle Scholar
  35. Schröder A, Schanz D, Roloff C, Michaelis D (2014) Lagrangian and Eulerian dynamics of coherent structures in turbulent flow over periodic hills using time-resolved tomo PIV and 4D-PTV “Shake-the-box” 17th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  36. Schröder A, Schanz D, Geisler R, Gesemann S (2016) Investigations of coherent structures in near-wall turbulence and large wall-shear stress events using Shake-The-Box, 18th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  37. Tawfek AA (1996) Heat transfer and pressure distributions of an impinging jet on a flat surface. Heat Mass Transf 32:49–54CrossRefGoogle Scholar
  38. Tronchin T, David L, Farcy A (2015) Loads and pressure evaluation of the flow around a flapping wing from instantaneous 3D velocity measurements. Exp Fluids 56:7CrossRefGoogle Scholar
  39. Tu CV, Wood DH (1996) Wall pressure and shear stress measurements beneath an impinging jet. J Fluid Mech 55:439–458Google Scholar
  40. van Gent PL, Michaelis D, van Oudheusden BW, Weiss PE, de Kat R, Laskari A, Jeon YJ, David L, Schanz D, Huhn F, Gesemann S, Novara M, McPhaden C, Neeteson NJ, Rival DE, Schneiders JFG, Schrijer FFJ (2017) Comparative assessment of pressure field reconstructions from particle image velocimetry measurements and Lagrangian particle tracking. Exp Fluids 58:33CrossRefGoogle Scholar
  41. Violato D, Ianiro A, Cardone G, Scarano F (2012) Three-dimensional vortex dynamics and convective heat transfer in circular and chevron impinging jets. Int J Heat Fluid Fl 37:22–36CrossRefGoogle Scholar
  42. Wieneke B (2008) Volume self-calibration for 3D particle image velocimetry. Exp Fluids 45:549–556CrossRefGoogle Scholar
  43. Wieneke B (2013) Iterative reconstruction of volumetric particle distribution. Meas Sci Technol 24:024008CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Experimental Methods, German Aerospace Center (DLR)Institute of Aerodynamics and Flow TechnologyGöttingenGermany
  2. 2.Aerodynamics & Aeroelasticity, Aerospace DivisionDefence Science & Technology GroupMelbourneAustralia

Personalised recommendations