Skip to main content
Log in

Experimental study on rotating instability mode characteristics of axial compressor tip flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper investigates the rotating instabilities that occurred on the single-stage axial compressor designed for aerodynamic performance validation, which was tested with two sets of circumferential measuring points in combination. Circumferential mode characteristics of compressors are usually too high to be captured experimentally, and aliasing of the circumferential mode order occurs when not enough sensors are used. A calibration and prediction method to capture the higher circumferential mode of unsteady flow in a compressor was proposed. Unsteady pressure fluctuations near the tip region in an axial compressor were studied, and high circumferential mode characteristics were captured on both the blade passing frequency (BPF) and the rotational instability frequency (RIF) under different flow rate conditions based on this novel method. The characteristic RI spectrum with a broadband hump was present in a large range of flow conditions. Both the frequency range and the dominant circumferential mode order decreased as the flow rate decreased. Based on the calibrated mode characteristics, a rotating aerodynamic source model is used to explain the side-by-side peak of RIF spectrum and rotating characteristics of RI. The calibration and prediction method of the high circumferential mode is beneficial for the research of unsteady flow in an axial compressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

B :

Number of rotor blades

V :

Number of inlet guide vanes

f :

Frequency

p :

Pressure

t :

Time

m :

Circumferential mode order

\({m_x}\) :

Actual mode order

\(m'\) :

Transition mode order

N :

Number of evenly spaced measuring points in a ring

\(\varphi\) :

Flow coefficient

\(\omega\) :

Angular velocity

\({\omega _m}\) :

Angular velocity of the rotating mode

\({\theta _s}\) :

Angular position

\(\psi\) :

Total pressure coefficient

\(\Delta \phi\) :

Circumferential phase difference

\(\eta\) :

Efficiency

\({\Omega _R}\) :

Angular velocity of rotor

\({\Omega _m}\) :

Angular velocity of mode m at BPF

LCM:

Least common multiple

\(\Omega _{{\text{Q}}}^{F}\) :

Angular velocity of source Q in the fixed reference frame

\(\omega _{{\text{m}}}^{F}\) :

Angular frequency of mode wave component m

\(\omega _{{}}^{{\text{Q}}}\) :

Angular frequency of the aerodynamic source Q

\(n_{Q}^{F}\) :

Source rotating speed

\(f_{{\text{m}}}^{F}\) :

Frequency of mode wave component m

\(f_{{}}^{{\text{Q}}}\) :

Frequency of the aerodynamic source Q

References

  • Baumgartner M, Kameier F, Hourmouziadis J (1995) Non-Engine Order Blade Vibration in a High Pressure Compressor. 12th International Symposium on Airbreathing Engines, Melbourne, Australia

  • Holste F, Neise W (1995) Acoustical near field measurements on a propfan model for noise source identification. In Proc. First CEAS/AIAA Aeroacoustics Conference. DGLR-Bericht 95-01 (1995) 1221–1229, 6 Bild., 2 Tab., 5 Lit.

  • Holste F, Neise W (1997) Noise source identification in a propfan model by means of acoustical near field measurements. J Sound Vib 203(4):641–665

    Article  Google Scholar 

  • Holzinger F, Wartzek F, Jüngst M, Schiffer HP, Leichtfuss S (2016) Self-excited blade vibration experimentally investigated in transonic compressors: rotating instabilities and flutter. J Turbomach. https://doi.org/10.1115/1.4032163

    Google Scholar 

  • Kameier F, Neise W (1997) Rotating blade flow instability as a source of noise in axial turbomachines. J Sound Vib 203(5):833–853

    Article  Google Scholar 

  • Liu JM, Holste F, Neise W (1996) On the azimuthal mode structure of rotating blade flow instabilities in axial turbomachines. AIAA Paper, (96–1741)

  • Mailach R, Lehmann I, Vogeler KT (2001) Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex. J Turbomach 123(3):453–460

    Article  Google Scholar 

  • Marz J, Hah C, Neise W (2002) An experimental and numerical investigation into the mechanisms of rotating instability. J Turbomach 124(3):367–374

    Article  Google Scholar 

  • Mathioudakis K, Breugelmans FAE (1985) Development of small rotating stall in a single stage axial compressor. ASME 1985 international gas turbine conference and exhibit, Houston, TX

  • Neuhaus L, Neise W (2002) Active flow control to improve the aerodynamic and acoustic performance of axial turbomachines. In AIAA paper no 2002–2948, in Proceedings of the 1rst Flow Control Conference (pp. 24–26)

  • Neuhaus L, Schulz J, Neise W, Möser M (2003) Active control of the aerodynamic performance and tonal noise of axial turbomachines. Proc Inst Mech Eng Part A: J Power Energy 217(4):375–383

    Article  Google Scholar 

  • Pardowitz B, Tapken U, Enghardt L (2012) Time-resolved rotating instability waves in an annular cascade. 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO, June, pp 4–6

  • Pardowitz B, Tapken U, Neuhaus L, Enghardt L (2015) Experiments on an axial fan stage: time-resolved analysis of rotating instability modes. J Eng Gas Turbines Power 137(6):062505

    Article  Google Scholar 

  • Tyler JM, Sofrin TG (1962). Axial flow compressor noise studies (No. 620532). SAE Technical Paper

  • Vo HD (2010) Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations. J Propul Power 26(3):556–561

    Article  MathSciNet  Google Scholar 

  • Wang H, Wu Y, Ouyang H, Du Z (2016a) Circumferential propagating characteristics of tip leakage flow oscillation and its induced rotating pressure wave. Proc Inst Mech Eng Part A J Power Energy 230(4):374–387

    Article  Google Scholar 

  • Wang H, Wu Y, Ouyang H, Tian J, Du Z (2016b). Investigations of rotating instability and fluctuating tip clearance flow in a low-speed axial compressor. Proc Inst Mech Eng Part G J Aerosp Eng 230(6):981–994

    Article  Google Scholar 

  • Wang H, Wu YD, Ouyang H (2016c) Aerodynamic rotating instability and fluctuated characteristics of tip clearance flow in low speed axial flow compressor. J Aerosp Power 31(9):2239–2250

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (grant no. 11202132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Yao, D., Wu, Y. et al. Experimental study on rotating instability mode characteristics of axial compressor tip flow. Exp Fluids 59, 63 (2018). https://doi.org/10.1007/s00348-018-2517-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-018-2517-0

Navigation