Flow visualization using tobacco mosaic virus

Abstract

A flow visualization technique using dilute solutions of tobacco mosaic virus (TMV) is described. Rod-shaped TMV-particles align with shear, an effect that produces a luminous interference pattern when the TMV solution is viewed between crossed polarizers. Attractive features of this technique are that it is both transparent to the naked eye and benign to fish. We use it here to visualize the evolution and decay of the flows that they produce. We also report that dilute solutions of Kalliroscope are moderately birefringent and so may similarly be used for qualitative in situ flow visualizations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Alcock ED, Sadron CL (1935) An optical method for measuring the distribution of velocity gradients in a two-dimensional flow. J Appl Phys 6:92–95

    Google Scholar 

  2. Andersen EJ, McGillis WR, Grosenbaugh MA (2001) The boundary layer of swimming fish. J Exp Biol 204:81–102

    Google Scholar 

  3. Bartol IK, Patterson MR, Mann R (2001) Swimming mechanics and behavior of the shallow-water brief squid Lolliguncula brevis. J Exp Biol 204:3655–3682

    Google Scholar 

  4. Bawden FC, Pirie NW, Bernal JD, Fankuchen I (1936) Liquid crystalline substances from virus-infected plants. Nature 138:1051

    Article  Google Scholar 

  5. Boedtker H, Simmons NS (1958) The preparation and characterization of essentially uniform tobacco mosaic virus p. J Am Chem Soc 80:2550–2556

    Article  Google Scholar 

  6. Binnie AM (1945) A double-refraction method of detecting turbulence in liquids. Proc Phys Soc 57:390–402

    Article  Google Scholar 

  7. Cerf R, Scheraga HA (1952) Flow birefringence in solutions of macromolecules. Chem Rev 51:185–261

    Article  Google Scholar 

  8. Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265

    Article  Google Scholar 

  9. Diesselhorst VH, Freundlich H (1916) Uber schlierenbildung in kolloiden losungen und ein verfahren die gestalt von kolloidteilschen festzustellen. Physik Zeitschr 17:117–128

    Google Scholar 

  10. Dorgan KM, Jumars PA, Johnson B, Boudreau BP, Landis E (2005) Burrow elongation by crack propagation. Nature 433:475

    Article  Google Scholar 

  11. Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412

    Google Scholar 

  12. Fiedler H, Nottmeyere K (1985) Schlieren photography of water flow. Exp Fluids 3:145–151

    Article  Google Scholar 

  13. Freundlich H (1926) Colloid and capillary chemistry. (trans: Hatfield HS). E.P. Dutton and Co., New York, pp 403–408

  14. Goreau TJF, Goreau PDE, Goreau CSH (1993) On the nature of things: the scientific photography of Fritz Goro. Aperture Books, New York, pp 74–75

  15. Full R, Yamauchi A, Jindrich D (1995) Maximum single leg force production: cockroaches righting on photoelastic gelatin. J Exp Biol 198:2441–2452

    Google Scholar 

  16. Hu DL, Chan B, Bush JWM (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666

    Article  Google Scholar 

  17. Humphrey RH (1922) Demonstration of the double refraction due to motion of a vanadium pentoxide sol, and some applications. Proc Phys Soc Lond 35:217–218

    Article  Google Scholar 

  18. Maxwell JC (1873) On double refraction in a viscous fluid in motion. Proc Roy Soc (Lond) 22:46

    Article  Google Scholar 

  19. McCutchen CW (1977) Froude propulsive efficiency of a small fish, measured by wake visualization. In: Pedley T (ed) Scale effects in animal locomotion. Academic Press, London, pp 339–363

    Google Scholar 

  20. Merzkirch W (1974) Flow Visualization. Academic Press, New York

    Google Scholar 

  21. Muller UK, Van den Heuvel BLE, Stamhuis EJ, Videler JJ (1997) Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J Exp Biol 200:2893–2906

    Google Scholar 

  22. Pindera JT, Krishnamurthy AR (1978) Characteristic relations of flow birefringence. Exp Mech 18:1–10

    Article  Google Scholar 

  23. Prados JW, Peebles FN (1958) Two-dimensional laminar-flow analysis utilizing a birefringent liquid. AIChE J 5:225–234

    Article  Google Scholar 

  24. Peterlin A (1976) Optical effects in flow. Annu Rev Fluid Mech 8:35–55

    Article  Google Scholar 

  25. Pih H (1980) Birefringent-fluid-flow method in engineering. Exp Mech 20:437–444

    Article  Google Scholar 

  26. Rosen M (1959) Water flow about a swimming fish. NOTS Technical Publication. U.S. Naval Ordnance Test Station, China Lake

  27. Spedding GR, Hedenstrőm A, Rosén M (2003) Quantitative studies of the wakes of freely-flying birds in a low turbulence wind tunnel. Exp Fluids 34:291–303

    Article  Google Scholar 

  28. Stamhuis EJ, Videler JJ (1995) Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J Exp Biol 198:283–294

    Google Scholar 

  29. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Ann Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  30. Squires TM, Quake SR (2005) Microfluidics: fluid physics on the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  31. Sutera SP (1960) Streaming birefringence as a hydrodynamic research tool. PhD. thesis, Cal Inst Tech

  32. Takahashi WN, Rawlins TE (1933) Rod-shaped particles in tobacco mosaic virus demonstrated by stream double refraction. Science 77:26–27

    Article  Google Scholar 

  33. Videler JJ, Stamhuis EJ, Povel GDE (2004) Leading-edge vortex lifts swifts. Science 306:1960–1962

    Article  Google Scholar 

  34. Videler JJ, Muller UK, Stamhuis EJ (1999) Aquatic vertebrate locomotion: wakes from body waves. J Exp Biol 202:3423–3430

    Google Scholar 

  35. Wada E (1954) Effect of rate of shear on viscosity of a dilute linear polymer and of tobacco mosaic virus in solution. J Poly Sci 14:305–307

    Article  Google Scholar 

  36. Wayland H (1960) Streaming birefringence of rigid macromolecules in geneal two-dimensional laminar flow. J Chem Phys 33:769–773

    Article  Google Scholar 

  37. Welsh RE (1955) Studies on the aggregation reactions and basic dye binding of tobacco mosaic virus. J Gen Physiol 39:437–471

    Article  Google Scholar 

  38. Zocher H (1921) Ueber Sole mit nichtkugeligen Teilchen [Sols with non-spherical particles]. Zeitschrift für physikalische Chemie 98:293–337

    Google Scholar 

Download references

Acknowledgments

We thank L. Mendel and B. Chan for assistance with experiments. TMV was kindly donated by S. Winter and M. Schönfelder of German Collection of Microorganisms and cell cultures (DSMZ). We thank Rudi Strickler and Gerald Stubbs for helpful conversations about the limitations of fluid visualization techniques and the physical properties of TMV respectively. T.G. gratefully acknowledges many conversations with the late F. W. Goro about the original photographs. We dedicate this paper to the memory of his pioneering work. J.W.M.B. gratefully acknowledges the financial support of the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David L. Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOV (23,544 KB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, D.L., Goreau, T.J. & Bush, J.W.M. Flow visualization using tobacco mosaic virus. Exp Fluids 46, 477–484 (2009). https://doi.org/10.1007/s00348-008-0573-6

Download citation

Keywords

  • Vortex
  • Flow Visualization
  • Tobacco Mosaic Virus
  • Vanadium Pentoxide
  • Lead Edge Vortex