Skip to main content
Log in

Therapieoptionen bei progredienter Myopie im Kindesalter

Treatment options for progressive myopia in childhood

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Weltweit nimmt die Inzidenz der Myopie zu. Die damit einhergehende Zunahme sekundärer und visusbedrohender Augenerkrankungen wird Patienten, Augenärzte, Optometristen, Optiker und die Gesundheitssysteme vor große Herausforderungen stellen. Da eine Myopie im Kindes- und Jugendalter beginnt, kann eine Progression nur in dieser Lebensphase beeinflusst werden. Dieser Beitrag gibt einen Überblick über optische und pharmakologische Therapieoptionen, die mittlere Effektgrößen von bis zu 50 % Progressionsminderung bei vergleichsweise günstigem Nebenwirkungsprofil aufweisen.

Abstract

The incidence of myopia is increasing worldwide. The associated increase in secondary and vision-threatening eye diseases will pose major challenges to patients, ophthalmologists, optometrists, opticians and healthcare systems. Since myopia begins in childhood and adolescence, progression can only be influenced in this phase of life. This article gives an overview of optical and pharmacological treatment options, which show average effect sizes of up to 50% progression reduction with a comparatively favorable side effect profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Fricke TR, Jong M, Naidoo KS, Sankaridurg P, Naduvilath TJ, Ho SM et al (2018) Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br J Ophthalmol 102(7):855–862

    Article  Google Scholar 

  2. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P et al (2016) Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123(5):1036–1042

    Article  Google Scholar 

  3. Williams KM, Bertelsen G, Cumberland P, Wolfram C, Verhoeven VJM, Anastasopoulos E et al (2015) Increasing prevalence of myopia in Europe and the impact of education. Ophthalmology 122(7):1489–1497

    Article  Google Scholar 

  4. Wesemann W (2018) Analysis of spectacle lens prescriptions shows no increase of myopia in Germany from 2000 to 2015. Ophthalmologe 115(5):409–417

    Article  CAS  Google Scholar 

  5. Flitcroft DI (2012) The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res 31(6):622–660

    Article  CAS  Google Scholar 

  6. Trier K, Munk Ribel-Madsen S, Cui D, Brøgger Christensen S (2008) Systemic 7‑methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J Ocul Biol Dis Infor 1(2–4):85–93

    Article  Google Scholar 

  7. Jensen H (1991) Myopia progression in young school children. A prospective study of myopia progression and the effect of a trial with bifocal lenses and beta blocker eye drops. Acta Ophthalmol 200:1–79

    Google Scholar 

  8. Chua W‑H, Balakrishnan V, Chan Y‑H, Tong L, Ling Y, Quah B‑L et al (2006) Atropine for the treatment of childhood myopia. Ophthalmology 113(12):2285–2291

    Article  Google Scholar 

  9. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A et al (2012) Atropine for the treatment of childhood myopia: safety and efficacy of 0.5 %, 0.1 %, and 0.01 % doses (Atropine for the Treatment of Myopia 2). Ophthalmology 119(2):347–354

    Article  Google Scholar 

  10. Chia A, Chua W‑H, Wen L, Fong A, Goon YY, Tan D (2014) Atropine for the treatment of childhood myopia: changes after stopping atropine 0.01 %, 0.1 % and 0.5. Am J Ophthalmol 157(2):451–457.e1

    Article  CAS  Google Scholar 

  11. Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E et al (2018) Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05 %, 0.025 %, and 0.01 % atropine eye drops in myopia control. Ophthalmology 126:113. https://doi.org/10.1016/j.ophtha.2018.05.029

    Article  PubMed  Google Scholar 

  12. Li S‑M, Wu S‑S, Kang M‑T, Liu Y, Jia S‑M, Li S‑Y et al (2014) Atropine slows myopia progression more in Asian than white children by meta-analysis. Optom Vis Sci 91(3):342–350

    PubMed  Google Scholar 

  13. Schittkowski MP, Sturm V (2018) Atropine for the prevention of progression in myopia—data, side effects, practical guidelines. Klin Monbl Augenheilkd 235(4):385–391

    Article  Google Scholar 

  14. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H et al (2016) Efficacy comparison of 16 interventions for myopia control in children: a network Meta-analysis. Ophthalmology 123(4):697–708

    Article  Google Scholar 

  15. Polling JR, Eijkemans MJ, Esser J, Gilles U, Kolling GH, Schulz E et al (2009) A randomised comparison of bilateral recession versus unilateral recession-resection as surgery for infantile esotropia. Br J Ophthalmol 93(7):954–957

    Article  Google Scholar 

  16. Diaz-Llopis M, Pinazo-Durán MD (2018) Superdiluted atropine at 0.01 % reduces progression in children and adolescents. A 5 year study of safety and effectiveness. Arch Soc Esp Oftalmol. https://doi.org/10.1016/j.oftale.2018.02.006

    Article  PubMed  Google Scholar 

  17. Wu P‑C, Chuang M‑N, Choi J, Chen H, Wu G, Ohno-Matsui K et al (2018) Update in myopia and treatment strategy of atropine use in myopia control. Eye (Lond) 33(1):3–13

    Article  Google Scholar 

  18. Wolffsohn JS, Calossi A, Cho P, Gifford K, Jones L, Li M et al (2016) Global trends in myopia management attitudes and strategies in clinical practice. Cont Lens Anterior Eye 39(2):106–116

    Article  Google Scholar 

  19. Gong Q, Janowski M, Luo M, Wei H, Chen B, Yang G et al (2017) Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. Jama Ophthalmol 135(6):624–630

    Article  Google Scholar 

  20. Cooper J, Eisenberg N, Schulman E, Wang FM (2013) Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 90(12):1467–1472

    Article  Google Scholar 

  21. Loughman J, Flitcroft DI (2016) The acceptability and visual impact of 0.01 % atropine in a Caucasian population. Br J Ophthalmol 100(11):1525–1529

    Article  Google Scholar 

  22. Nishiyama Y, Moriyama M, Fukamachi M, Uchida A, Miyaushiro H, Kurata A et al (2015) Side Effects of Low Dose Atropine. Nippon Ganka Gakkai Zasshi 119(11):812–816

    CAS  PubMed  Google Scholar 

  23. German EJ, Wood D, Hurst MA (1999) Ocular effects of antimuscarinic compounds: is clinical effect determined by binding affinity for muscarinic receptors or melanin pigment? J Ocul Pharmacol Ther 15(3):257–269

    Article  CAS  Google Scholar 

  24. Chia A, Lu Q‑S, Tan D (2015) Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % Eyedrops. Ophthalmology 123(2):391–399

    Article  Google Scholar 

  25. Wu P‑C, Yang Y‑H, Fang P‑C (2011) The long-term results of using low-concentration atropine eye drops for controlling myopia progression in schoolchildren. J Ocul Pharmacol Ther 27(5):461–466

    Article  CAS  Google Scholar 

  26. Sun Y‑Y, Li S‑M, Li S‑Y, Kang M‑T, Liu L‑R, Meng B et al (2017) Effect of uncorrection versus full correction on myopia progression in 12-year-old children. Graefes Arch Clin Exp Ophthalmol 255(1):189–195

    Article  Google Scholar 

  27. Adler D, Millodot M (2006) The possible effect of undercorrection on myopic progression in children. Clin Exp Optom 89(5):315–321

    Article  Google Scholar 

  28. Chung K, Mohidin N, O’Leary DJ (2002) Undercorrection of myopia enhances rather than inhibits myopia progression. Vision Res 42(22):2555–2559

    Article  Google Scholar 

  29. Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD (2011) Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD004916.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D et al (2003) A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci 44(4):1492–1500

    Article  Google Scholar 

  31. Li S‑M, Ji Y‑Z, Wu S‑S, Zhan S‑Y, Wang B, Liu L‑R et al (2011) Multifocal versus single vision lenses intervention to slow progression of myopia in school-age children: a meta-analysis. Surv Ophthalmol 56(5):451–460

    Article  Google Scholar 

  32. Lam CSY, Tang WC, Tse DY-Y, Tang YY, To CH (2014) Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol 98(1):40–45

    Article  Google Scholar 

  33. Aller TA, Liu M, Wildsoet CF (2016) Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci 93(4):344–352

    Article  Google Scholar 

  34. Bullimore MA (2017) The safety of soft contact lenses in children. Optom Vis Sci 94(6):638–646

    Article  Google Scholar 

  35. Cho P, Cheung S‑W (2017) Protective role of orthokeratology in reducing risk of rapid axial elongation: a reanalysis of data from the ROMIO and TO-SEE studies. Invest Ophthalmol Vis Sci 58(3):1411–1416

    Article  Google Scholar 

  36. Lin H‑J, Wan L, Tsai F‑J, Tsai Y‑Y, Chen L‑A, Tsai AL et al (2014) Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol 14:40

    Article  Google Scholar 

  37. Chen C, Cheung SW, Cho P (2013) Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci 54(10):6510–6517

    Article  Google Scholar 

  38. Lipson MJ, Brooks MM, Koffler BH (2018) The role of orthokeratology in myopia control: a review. Eye Contact Lens 44(4):224–230

    Article  Google Scholar 

  39. Charm J, Cho P (2013) High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci 90(6):530–539

    Article  Google Scholar 

  40. Cho P, Cheung SW, Edwards M (2005) The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control. Curr Eye Res 30(1):71–80

    Article  Google Scholar 

  41. Hiraoka T, Kakita T, Okamoto F, Takahashi H, Oshika T (2012) Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci 53(7):3913–3919

    Article  Google Scholar 

  42. Kakita T, Hiraoka T, Oshika T (2011) Influence of overnight orthokeratology on axial elongation in childhood myopia. Invest Ophthalmol Vis Sci 52(5):2170–2174

    Article  Google Scholar 

  43. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutiérrez-Ortega R (2012) Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci 53(8):5060–5065

    Article  Google Scholar 

  44. Walline JJ, Jones LA, Sinnott LT (2009) Corneal reshaping and myopia progression. Br J Ophthalmol 93(9):1181–1185

    Article  CAS  Google Scholar 

  45. Tsukiyama J, Miyamoto Y, Higaki S, Fukuda M, Shimomura Y (2008) Changes in the anterior and posterior radii of the corneal curvature and anterior chamber depth by orthokeratology. Eye Contact Lens 34(1):17–20

    Article  Google Scholar 

  46. Cheung S‑W, Cho P (2013) Validity of axial length measurements for monitoring myopic progression in orthokeratology. Invest Ophthalmol Vis Sci 54(3):1613–1615

    Article  Google Scholar 

  47. Cho P, Cheung SW (2017) Discontinuation of orthokeratology on eyeball elongation (DOEE). Cont Lens Anterior Eye 40(2):82–87

    Article  CAS  Google Scholar 

  48. Watt KG, Swarbrick HA (2007) Trends in microbial keratitis associated with orthokeratology. Eye Contact Lens 33(6 Pt 2):373–377 (discussion 382)

    Article  Google Scholar 

  49. Li S‑M, Kang M‑T, Wu S‑S, Liu L‑R, Li H, Chen Z et al (2016) Efficacy, safety and acceptability of orthokeratology on slowing axial elongation in myopic children by meta-analysis. Curr Eye Res 41(5):600–608

    Article  Google Scholar 

  50. Bullimore MA, Sinnott LT, Jones-Jordan LA (2013) The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 90(9):937–944

    Article  Google Scholar 

  51. Liu YM, Xie P (2016) The safety of orthokeratology—a systematic review. Eye Contact Lens 42(1):35–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Lagrèze.

Ethics declarations

Interessenkonflikt

W.A. Lagrèze weist auf folgende Beziehungen hin: Forschungsförderung BMBF, DFG, Referentenhonorar Alcon, Santhera, MedUpdate. Beratung Santhera, Allergan, Boehringer-Ingelheim, Merz. L. Joachimsen gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joachimsen, L., Lagrèze, W.A. Therapieoptionen bei progredienter Myopie im Kindesalter. Ophthalmologe 116, 518–523 (2019). https://doi.org/10.1007/s00347-019-0873-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-019-0873-7

Schlüsselwörter

Keywords

Navigation