Skip to main content
Log in

Dynamischer Scheimpflug-Analyzer (Corvis ST) zur Bestimmung kornealer biomechanischer Parameter

Ein praxisbezogener Überblick

Dynamic Scheimpflug Analyzer (Corvis ST) for measurement of corneal biomechanical parameters

A praxis-related overview

  • Leitthema
  • Published:
Der Ophthalmologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Topographische und tomographische Parameter reichen oft für die frühzeitige Diagnostik von Hornhautveränderungen nicht aus. Pathologische Prozesse beginnen in der Mikrostruktur, noch bevor topographische/tomographische Auffälligkeiten erkennbar werden. Biomechanische Parameter korrelieren sehr stark mit den mikroskopischen strukturellen Kenngrößen.

Ziel der Arbeit

Ziel war die Ermittlung biomechanischer Parameter zur Charakteristik der kornealen mikroskopischen Gewebestruktur.

Material und Methoden

Mit dem dynamischen Scheimpflug-Analyzer (Corvis ST, Fa. OCULUS Optikgeräte GmbH, Wetzlar) wird das Deformationsverhalten der Hornhaut aufgenommen, daraus werden korneale Deformationsparameter sowie biomechanische Indizes für die Klassifizierung abgeleitet.

Ergebnisse

Deformationsparameter und Indizes unterscheiden sich bei Keratokonus signifikant von denen Gesunder. Es lassen sich Änderungen der Hornhaut bereits vor topographischen oder tomographischen Veränderungen nachweisen. Relevante Deformationsparameter weisen eine gute bis sehr gute Wiederhol- und Reproduzierbarkeit auf. Auch beim Glaukom zeigt sich ein verändertes Deformationsverhalten, was auf strukturelle Veränderungen zurückführbar ist.

Schlussfolgerung

Mit dem Corvis ST, einem Scheimpflug-basierten Tonometer, lässt sich die Kornea hinsichtlich Gewebestruktur und Konsistenz charakterisieren.

Abstract

Background

Topographic and tomographic parameters alone are often not sufficient for early detection of corneal changes. Pathological alterations in the microstructure of the cornea occur before changes in topography and tomography can be detected. Biomechanical parameters show a strong correlation with microscopic structural changes.

Objective

The aim of the study was to gain information about the microscopic structure and consistency of the cornea by measuring biomechanical parameters.

Materials and methods

The deformation behavior of the cornea was analyzed with the Dynamic Scheimpflug Analyzer (Corvis ST; OCULUS, Wetzlar, Germany). Deformation parameters and biomechanical indices were derived from the deformation response of the cornea.

Results

Deformation parameters and indices in keratoconus patients differ significantly from healthy subjects. Alterations of the cornea can be detected before topographic and tomographic changes occur. The repeatability and reproducibility of relevant deformation parameters is good to very good. In glaucoma patients a modified deformation behavior of the cornea can be observed, which might be related to structural changes.

Conclusion

The Corvis ST allows a reliable characterization of the tissue structure and consistency of the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Ali NQ, Patel DV, Mcghee CN (2014) Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 55:3651–3659

    Article  PubMed  Google Scholar 

  2. Ambrosio R Jr., Lopes BT, Faria-Correia F et al (2017) Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443

    Article  PubMed  Google Scholar 

  3. Asaoka R, Nakakura S, Tabuchi H et al (2015) The relationship between Corvis ST Tonometry measured corneal parameters and intraocular pressure, corneal thickness and corneal curvature. PLoS ONE 10:e140385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bao F, Deng M, Wang Q et al (2015) Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. Exp Eye Res 137:11–17

    Article  PubMed  CAS  Google Scholar 

  5. Clayson K, Pan X, Pavlatos E et al (2017) Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Exp Eye Res 165:29–34

    Article  PubMed  CAS  Google Scholar 

  6. Everitt BS, Skrondal A (2011) The Cambridge dictionary of statistics. Cambridge University Press, Cambridge

    Google Scholar 

  7. Falkenstein IA, Cheng L, Freeman WR (2007) Changes of intraocular pressure after intravitreal injection of bevacizumab (avastin). Retina 27:1044–1047

    Article  PubMed  Google Scholar 

  8. Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, Hoboken

    Google Scholar 

  9. Francis M, Pahuja N, Shroff R et al (2017) Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. J Cataract Refract Surg 43:1271–1280

    Article  PubMed  Google Scholar 

  10. Huseynova T, Waring GOT, Roberts C et al (2014) Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol 157:885–893

    Article  PubMed  Google Scholar 

  11. Jung Y, Park HL, Yang HJ et al (2017) Characteristics of corneal biomechanical responses detected by a non-contact scheimpflug-based tonometer in eyes with glaucoma. Acta Ophthalmol. https://doi.org/10.1111/aos.13466

    Article  PubMed  Google Scholar 

  12. Kling S, Bekesi N, Dorronsoro C et al (2014) Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. PLoS ONE 9:e104904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Labiris G, Gatzioufas Z, Sideroudi H et al (2013) Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol (Copenh) 91:e258–e262

    Article  Google Scholar 

  14. Labiris G, Giarmoukakis A, Sideroudi H et al (2014) Diagnostic capacity of biomechanical indices from a dynamic bidirectional applanation device in pellucid marginal degeneration. J Cataract Refract Surg 40:1006–1012

    Article  PubMed  Google Scholar 

  15. Lee R, Chang RT, Wong IY et al (2016) Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma 25:e603–e609

    Article  PubMed  Google Scholar 

  16. Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972

    Article  PubMed  Google Scholar 

  17. Leszczynska A, Moehler K, Spoerl E et al (2017) Measurement of orbital biomechanical properties in patients with thyroid orbitopathy using the dynamic Scheimpflug analyzer (Corvis ST). Curr Eye Res. https://doi.org/10.1080/02713683.2017.1405044

    Article  PubMed  Google Scholar 

  18. Long Q, Wang JY, Xu D et al (2017) Comparison of corneal biomechanics in Sjogren’s syndrome and non-Sjogren’s syndrome dry eyes by Scheimpflug based device. Int J Ophthalmol 10:711–716

    PubMed  PubMed Central  Google Scholar 

  19. Lopes BT, Roberts CJ, Elsheikh A et al (2017) Repeatability and reproducibility of intraocular pressure and dynamic corneal response parameters assessed by the Corvis ST. J Ophthalmol. https://doi.org/10.1155/2017/8515742

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mcalinden C, Khadka J, Pesudovs K (2015) Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 41:2598–2604

    Article  PubMed  Google Scholar 

  21. Metzler KM, Mahmoud AM, Liu J et al (2014) Deformation response of paired donor corneas to an air puff: intact whole globe versus mounted corneoscleral rim. J Cataract Refract Surg 40:888–896

    Article  PubMed  Google Scholar 

  22. Miki A, Maeda N, Ikuno Y et al (2017) Factors associated with corneal deformation responses measured with a dynamic Scheimpflug analyzer. Invest Ophthalmol Vis Sci 58:538–544

    Article  PubMed  Google Scholar 

  23. Muench S, Balzani D, Roellig M et al (2017) Method for the development of realistic boundary conditions for the simulation of non-contact tonometry. Proc Appl Math Mech 17:207–208

    Article  Google Scholar 

  24. Nemeth G, Szalai E, Hassan Z et al (2017) Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas. Int J Ophthalmol 10:217–222

    PubMed  PubMed Central  Google Scholar 

  25. Pillunat K (2018) New parameter for diagnostic of gleucoma: BGI- biomechanical glaucoma index. ARVO Abstract

    Google Scholar 

  26. Rogowska ME, Iskander DR (2015) Age-related changes in corneal deformation dynamics utilizing Scheimpflug imaging. PLoS ONE 10:e140093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Salvetat ML, Zeppieri M, Tosoni C et al (2015) Corneal deformation parameters provided by the Corvis-ST Pachy-Tonometer in healthy subjects and glaucoma patients. J Glaucoma 24:568–574

    Article  PubMed  Google Scholar 

  28. Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199

    Article  PubMed  Google Scholar 

  29. Silver DM, Geyer O (2000) Pressure-volume relation for the living human eye. Curr Eye Res 20:115–120

    Article  PubMed  CAS  Google Scholar 

  30. Sinha Roy A, Kurian M, Matalia H et al (2015) Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo. J Mech Behav Biomed Mater 48:173–182

    Article  PubMed  Google Scholar 

  31. Spoerl E, Pillunat KR, Kuhlisch E et al (2015) Concept for analyzing biomechanical parameters in clinical studies. Cont Lens Anterior Eye 38:389

    Article  PubMed  Google Scholar 

  32. Spörl E, Terai N, Haustein M et al (2009) Biomechanische Zustand der Hornhaut als neuer Indikator für pathologische und strukturelle Veränderungen. Ophthalmologe 106:512–520

    Article  PubMed  Google Scholar 

  33. Sporl E, Terai N, Haustein M et al (2009) Biomechanical condition of the cornea as a new indicator for pathological and structural changes. Ophthalmologe 106:512–520

    Article  PubMed  CAS  Google Scholar 

  34. Steinberg J, Amirabadi NE, Frings A et al (2017) Keratoconus screening with dynamic biomechanical in vivo Scheimpflug analyses: a proof-of-concept study. J Refract Surg 33:773–778

    Article  PubMed  Google Scholar 

  35. Tappeiner C, Perren B, Iliev ME et al (2008) Orbital fat atrophy in glaucoma patients treated with topical bimatoprost–can bimatoprost cause enophthalmos? Klin Monbl Augenheilkd 225:443–445

    Article  PubMed  CAS  Google Scholar 

  36. Terai N, Raiskup F, Haustein M et al (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562

    Article  PubMed  Google Scholar 

  37. Tian L, Wang D, Wu Y et al (2016) Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol 94:e317–e324

    Article  PubMed  Google Scholar 

  38. Valbon BF, Ambrosio R Jr., Fontes BM et al (2013) Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol 76:229–232

    Article  PubMed  Google Scholar 

  39. Vellara HR, Hart R, Gokul A et al (2017) In vivo ocular biomechanical compliance in thyroid eye disease. Br J Ophthalmol 101:1076–1079

    Article  PubMed  Google Scholar 

  40. Vinciguerra R, Ambrosio R Jr., Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810

    Article  PubMed  Google Scholar 

  41. Vinciguerra R, Ambrosio R Jr., Roberts CJ et al (2017) Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg 33:399–407

    Article  PubMed  Google Scholar 

  42. Vinciguerra R, Elsheikh A, Roberts CJ et al (2016) Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 32:550–561

    Article  PubMed  Google Scholar 

  43. Wang J, Li Y, Jin Y et al (2015) Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol. https://doi.org/10.1155/2015/161869

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang W, Du S, Zhang X (2015) Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci 56:5557–5565

    Article  PubMed  Google Scholar 

  45. Wollensak G, Spoerl E, Seiler T (2003) Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29:1780–1785

    Article  PubMed  Google Scholar 

  46. Wu N, Chen Y, Yu X et al (2016) Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLoS ONE 11:e155527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ye C, Yu M, Lai G et al (2015) Variability of corneal deformation response in normal and keratoconic eyes. Optom Vis Sci 92:e149–e153

    Article  PubMed  Google Scholar 

  48. Zong Y, Wu N, Fu Z et al (2017) Evaluation of corneal deformation parameters provided by the Corvis ST Tonometer after trabeculectomy. J Glaucoma 26:166–172

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Herber.

Ethics declarations

Interessenkonflikt

R. Herber, N. Terai, K.R. Pillunat, F. Raiskup, L.E. Pillunat und E. Spörl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herber, R., Terai, N., Pillunat, K.R. et al. Dynamischer Scheimpflug-Analyzer (Corvis ST) zur Bestimmung kornealer biomechanischer Parameter. Ophthalmologe 115, 635–643 (2018). https://doi.org/10.1007/s00347-018-0716-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00347-018-0716-y

Schlüsselwörter

Keywords

Navigation