Der Ophthalmologe

, Volume 115, Issue 2, pp 100–106 | Cite as

Neue aktuelle und zukünftige Therapieoptionen in der Behandlung des trockenen Auges

Leitthema

Zusammenfassung

Das trockene Auge wurde im Mai 2017 vom „Dry Eye Workshop – DEWSII“ neu definiert. Dementsprechend handelt es sich um eine „multifaktorielle Erkrankung der Augenoberfläche, gekennzeichnet durch einen Verlust der Homöostase des Tränenfilms und verbunden mit okulären Symptomen“. Die aktuelle Definition umfasst ätiologische Faktoren wie eine Instabilität und Hyperosmolarität des Tränenfilms, Entzündung und Schädigung der Augenoberfläche sowie – als neuen Aspekt im Vergleich zur alten Definition – neuronale Störungen. Aktuelle und zukünftige Therapieoptionen zielen auf die Behandlung der oben beschriebenen pathogenetischen Ereignisse ab. Neue Tränenersatzprodukte, Medikamente und Instrumente zur Tränenfilmstimulation, innovative antientzündliche Therapien, Medikamente zur Beeinflussung der kornealen Innervation und neue Methoden zur Behandlung der meibom-Drüsen-Dysfunktion stehen bereits jetzt oder in der nahen Zukunft zur Verfügung.

Schlüsselwörter

Tränenersatzprodukte Tränenfilm Augenoberfläche Medikamente Meibom-Drüsen-Dysfunktion 

Novel current and future therapy options for treatment of dry eye disease

Abstract

Dry eye disease was redefined by the dry eye workshop (DEWS II) in May 2017. According to the new definition “dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the tear film and accompanied by ocular symptoms”. The current definition encompasses etiological factors, such as instability and hyperosmolarity of the tear film, ocular surface inflammation and damage as well as a new aspect compared to the former definition, neurosensory abnormalities. Recent and future therapeutic options for dry eye focus on treatment of the aforementioned pathogenetic events. New tear substitutes, medications and devices to stimulate tear production, innovative anti-inflammatory treatment, medications to influence corneal innervation and new methods for treatment of Meibomian gland dysfunction are already available or will be available in the near future.

Keywords

Artificial tears Tear film Ocular surface Medications Meibomian gland dysfunction 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

E.M. Messmer war als Berater und Referent für Alcon Pharma GmbH, Dompé, Pharm-Allergan GmbH, Santen GmbH, Shire, Théa Pharma GmbH, TRB-Chemedica, Ursapharm Arzneimittel GmbH und Visufarma tätig und hat dafür Honorare erhalten.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Messmer EM (2015) The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 112:71–81 (quiz 82)PubMedPubMedCentralGoogle Scholar
  2. 2.
    Stern ME, Beuerman RW, Fox RI, Gao J, Mircheff AK, Pflugfelder SC (1998) The pathology of dry eye: the interaction between the ocular surface and lacrimal glands. Cornea 17:584–589CrossRefPubMedGoogle Scholar
  3. 3.
    Heiligenhaus A, Koch JM, Kruse FE, Schwarz C, Waubke TN (1995) Diagnosis and and differentiation of dry eye disorders. Ophthalmologe 92:6–11PubMedGoogle Scholar
  4. 4.
    Lemp MA, Crews LA, Bron AJ, Foulks GN, Sullivan BD (2012) Distribution of aqueous-deficient and evaporative dry eye in a clinic-based patient cohort: a retrospective study. Cornea 31:472–478CrossRefPubMedGoogle Scholar
  5. 5.
    Tong L, Chaurasia SS, Mehta JS, Beuerman RW (2010) Screening for meibomian gland disease: its relation to dry eye subtypes and symptoms in a tertiary referral clinic in singapore. Invest Ophthalmol Vis Sci 51:3449–3454CrossRefPubMedGoogle Scholar
  6. 6.
    Jones L, Downie LE, Korb D et al (2017) TFOS DEWS II management and therapy report. Ocul Surf 15:575–628CrossRefPubMedGoogle Scholar
  7. 7.
    Barabino S, Rolando M, Nardi M, Bonini S, Aragona P, Traverso CE (2014) The effect of an artificial tear combining hyaluronic acid and tamarind seeds polysaccharide in patients with moderate dry eye syndrome: a new treatment for dry eye. Eur J Ophthalmol 24:173–178CrossRefPubMedGoogle Scholar
  8. 8.
    Cohen S, Martin A, Sall K (2014) Evaluation of clinical outcomes in patients with dry eye disease using lubricant eye drops containing polyethylene glycol or carboxymethylcellulose. Clin Ophthalmol 8:157–164PubMedGoogle Scholar
  9. 9.
    Diaz-Valle D, Arriola-Villalobos P, Garcia-Vidal SE et al (2012) Effect of lubricating eyedrops on ocular light scattering as a measure of vision quality in patients with dry eye. J Cataract Refract Surg 38:1192–1197CrossRefPubMedGoogle Scholar
  10. 10.
    Doughty MJ (2014) Fluorescein-tear breakup time as an assessment of efficacy of tear replacement therapy in dry eye patients: a systematic review and meta-analysis. Ocul Surf 12:100–111CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JH, Ahn HS, Kim EK, Kim TI (2011) Efficacy of sodium hyaluronate and carboxymethylcellulose in treating mild to moderate dry eye disease. Cornea 30:175–179CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang Y, Potvin R, Gong L (2013) A study of the short-term effect of artificial tears on contrast sensitivity in patients with Sjogren’s syndrome. Invest Ophthalmol Vis Sci 54:7977–7982CrossRefPubMedGoogle Scholar
  13. 13.
    Postorino EI, Rania L, Aragona E et al (2017) Efficacy of eyedrops containing cross-linked hyaluronic acid and coenzyme Q10 in treating patients with mild to moderate dry eye. Eur J Ophthalmol.  https://doi.org/10.5301/ejo.5001011 PubMedGoogle Scholar
  14. 14.
    Schmidt TA, Sullivan DA, Knop E et al (2013) Transcription, translation, and function of lubricin, a boundary lubricant, at the ocular surface. JAMA Ophthalmol 131:766–776CrossRefPubMedGoogle Scholar
  15. 15.
    Alquraini A, Garguilo S, D’Souza G et al (2015) The interaction of lubricin/proteoglycan 4 (PRG4) with toll-like receptors 2 and 4: an anti-inflammatory role of PRG4 in synovial fluid. Arthritis Res Ther 17:353CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Iqbal SM, Leonard C, Regmi SC et al (2016) Lubricin/Proteoglycan 4 binds to and regulates the activity of toll-like receptors in vitro. Sci Rep 6:18910CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lambiase A, Sullivan BD, Schmidt TA et al (2017) A two-week, randomized, double-masked study to evaluate safety and efficacy of Lubricin (150 mug/mL) eye drops versus sodium hyaluronate (HA) 0.18 % eye drops (Vismed(R)) in patients with moderate dry eye disease. Ocul Surf 15:77–87CrossRefPubMedGoogle Scholar
  18. 18.
    Kamiya K, Nakanishi M, Ishii R et al (2012) Clinical evaluation of the additive effect of diquafosol tetrasodium on sodium hyaluronate monotherapy in patients with dry eye syndrome: a prospective, randomized, multicenter study. Eye (Lond) 26:1363–1368CrossRefGoogle Scholar
  19. 19.
    Koh S, Ikeda C, Takai Y, Watanabe H, Maeda N, Nishida K (2013) Long-term results of treatment with diquafosol ophthalmic solution for aqueous-deficient dry eye. Jpn J Ophthalmol 57:440–446CrossRefPubMedGoogle Scholar
  20. 20.
    Matsumoto Y, Ohashi Y, Watanabe H, Tsubota K (2012) Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese phase 2 clinical trial. Ophthalmology 119:1954–1960CrossRefPubMedGoogle Scholar
  21. 21.
    Nakamura M, Imanaka T, Sakamoto A (2012) Diquafosol ophthalmic solution for dry eye treatment. Adv Ther 29:579–589CrossRefPubMedGoogle Scholar
  22. 22.
    Shimazaki-Den S, Iseda H, Dogru M, Shimazaki J (2013) Effects of diquafosol sodium eye drops on tear film stability in short BUT type of dry eye. Cornea 32:1120–1125CrossRefPubMedGoogle Scholar
  23. 23.
    Takamura E, Tsubota K, Watanabe H, Ohashi Y (2012) A randomised, double-masked comparison study of diquafosol versus sodium hyaluronate ophthalmic solutions in dry eye patients. Br J Ophthalmol 96:1310–1315CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kinoshita S, Awamura S, Nakamichi N, Suzuki H, Oshiden K, Yokoi N (2014) A multicenter, open-label, 52-week study of 2% rebamipide (OPC-12759) ophthalmic suspension in patients with dry eye. Am J Ophthalmol 157:576–583.e1CrossRefPubMedGoogle Scholar
  25. 25.
    Samudre S, Lattanzio FA Jr., Lossen V et al (2011) Lacritin, a novel human tear glycoprotein, promotes sustained basal tearing and is well tolerated. Invest Ophthalmol Vis Sci 52:6265–6270CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vijmasi T, Chen FY, Balasubbu S et al (2014) Topical administration of lacritin is a novel therapy for aqueous-deficient dry eye disease. Invest Ophthalmol Vis Sci 55:5401–5409CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gumus K, Pflugfelder SC (2017) Intranasal tear neurostimulation: an emerging concept in the treatment of dry eye. Int Ophthalmol Clin 57:101–108CrossRefPubMedGoogle Scholar
  28. 28.
    Hyden D, Arlinger S (2007) On the sneeze-reflex and its control. Rhinology 45:218–219PubMedGoogle Scholar
  29. 29.
    Friedman NJ, Butron K, Robledo N, Loudin J, Baba SN, Chayet A (2016) A nonrandomized, open-label study to evaluate the effect of nasal stimulation on tear production in subjects with dry eye disease. Clin Ophthalmol 10:795–804PubMedPubMedCentralGoogle Scholar
  30. 30.
    Brinton M, Kossler AL, Patel ZM et al (2017) Enhanced tearing by electrical stimulation of the anterior ethmoid nerve. Invest Ophthalmol Vis Sci 58:2341–2348CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gumus K, Schuetzle KL, Pflugfelder SC (2017) Randomized controlled crossover trial comparing the impact of sham or Intranasal tear neurostimulation on conjunctival goblet cell degranulation. Am J Ophthalmol 177:159–168CrossRefPubMedGoogle Scholar
  32. 32.
    Marsh P, Pflugfelder SC (1999) Topical nonpreserved methylprednisolone therapy for keratoconjunctivitis sicca in Sjogren syndrome. Ophthalmology 106:811–816CrossRefPubMedGoogle Scholar
  33. 33.
    Pflugfelder SC, Maskin SL, Anderson B et al (2004) A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5 %, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol 138:444–457CrossRefPubMedGoogle Scholar
  34. 34.
    Baudouin C, de la Maza MS, Amrane M et al (2017) One-year efficacy and safety of 0.1 % cyclosporine A cationic emulsion in the treatment of severe dry eye disease. Eur J Ophthalmol.  https://doi.org/10.5301/ejo.5001002 Google Scholar
  35. 35.
    Leonardi A, Van Setten G, Amrane M et al (2016) Efficacy and safety of 0.1 % cyclosporine A cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. Eur J Ophthalmol 26:287–296CrossRefPubMedGoogle Scholar
  36. 36.
    Brown MM, Brown GC, Brown HC, Peet J, Roth Z (1960) Value-based medicine, comparative effectiveness, and cost-effectiveness analysis of topical cyclosporine for the treatment of dry eye syndrome. Arch Ophthalmol 2009(127):146–152Google Scholar
  37. 37.
    Straub M, Bron AM, Muselier-Mathieu A, Creuzot-Garcher C (2016) Long-term outcome after topical ciclosporin in severe dry eye disease with a 10-year follow-up. Br J Ophthalmol 100:1547–1550CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wilson SE, Perry HD (2007) Long-term resolution of chronic dry eye symptoms and signs after topical cyclosporine treatment. Ophthalmology 114:76–79CrossRefPubMedGoogle Scholar
  39. 39.
    Donnenfeld ED, Karpecki PM, Majmudar PA et al (2016) Safety of Lifitegrast ophthalmic solution 5.0 % in patients with dry eye disease: a 1‑year, multicenter, randomized, placebo-controlled study. Cornea 35:741–748CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Semba CP, Torkildsen GL, Lonsdale JD et al (2012) A phase 2 randomized, double-masked, placebo-controlled study of a novel integrin antagonist (SAR 1118) for the treatment of dry eye. Am J Ophthalmol 153:1050–1060.e1CrossRefPubMedGoogle Scholar
  41. 41.
    Sheppard JD, Torkildsen GL, Lonsdale JD et al (2014) Lifitegrast ophthalmic solution 5.0 % for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology 121:475–483CrossRefPubMedGoogle Scholar
  42. 42.
    Tauber J, Karpecki P, Latkany R et al (2015) Lifitegrast ophthalmic solution 5.0 % versus placebo for treatment of dry eye disease: results of the randomized phase III OPUS-2 study. Ophthalmology 122:2423–2431CrossRefPubMedGoogle Scholar
  43. 43.
    Takeuchi H, Okuyama K, Konno O et al (2005) Optimal dose and target trough level in cyclosporine and tacrolimus conversion in renal transplantation as evaluated by lymphocyte drug sensitivity and pharmacokinetic parameters. Transplant Proc 37:1745–1747CrossRefPubMedGoogle Scholar
  44. 44.
    Moscovici BK, Holzchuh R, Sakassegawa-Naves FE et al (2015) Treatment of Sjogren’s syndrome dry eye using 0.03 % tacrolimus eye drop: prospective double-blind randomized study. Cont Lens Anterior Eye 38:373–378CrossRefPubMedGoogle Scholar
  45. 45.
    Labbe A, Liang Q, Wang Z et al (2013) Corneal nerve structure and function in patients with non-sjogren dry eye: clinical correlations. Invest Ophthalmol Vis Sci 54:5144–5150CrossRefPubMedGoogle Scholar
  46. 46.
    Galor A, Levitt RC, Felix ER, Martin ER, Sarantopoulos CD (2015) Neuropathic ocular pain: an important yet underevaluated feature of dry eye. Eye (Lond) 29:301–312CrossRefGoogle Scholar
  47. 47.
    Rosenthal P, Borsook D (2012) The corneal pain system. Part I: the missing piece of the dry eye puzzle. Ocul Surf 10:2–14CrossRefPubMedGoogle Scholar
  48. 48.
    Craig JP, Nichols KK, Akpek EK et al (2017) TFOS DEWS II definition and classification report. Ocul Surf 15:276–283CrossRefPubMedGoogle Scholar
  49. 49.
    Lambiase A, Micera A, Pellegrini G et al (2009) In vitro evidence of nerve growth factor effects on human conjunctival epithelial cell differentiation and mucin gene expression. Invest Ophthalmol Vis Sci 50:4622–4630CrossRefPubMedGoogle Scholar
  50. 50.
    Coassin M, Lambiase A, Costa N et al (2005) Efficacy of topical nerve growth factor treatment in dogs affected by dry eye. Albrecht Von Graefes Arch Klin Exp Ophthalmol 243:151–155CrossRefGoogle Scholar
  51. 51.
    Bonini S, Rama P, Olzi D, Lambiase A (2003) Neurotrophic keratitis. Eye (Lond) 17:989–995CrossRefGoogle Scholar
  52. 52.
    Jain P, Li R, Lama T, Saragovi HU, Cumberlidge G, Meerovitch K (2011) An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp Eye Res 93:503–512CrossRefPubMedGoogle Scholar
  53. 53.
    Meerovitch K, Torkildsen G, Lonsdale J et al (2013) Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled Phase 2 clinical trial in patients with dry eye. Clin Ophthalmol 7:1275–1285CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Finis D, Hayajneh J, Konig C, Borrelli M, Schrader S, Geerling G (2014) Evaluation of an automated thermodynamic treatment (LipiFlow(R)) system for meibomian gland dysfunction: a prospective, randomized, observer-masked trial. Ocul Surf 12:146–154CrossRefPubMedGoogle Scholar
  55. 55.
    Greiner JV (2016) Long-Term (3 year) Effects of a single thermal pulsation system treatment on meibomian gland function and dry eye symptoms. Eye Contact Lens 42:99–107CrossRefPubMedGoogle Scholar
  56. 56.
    Lane SS, DuBiner HB, Epstein RJ et al (2012) A new system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea 31:396–404CrossRefPubMedGoogle Scholar
  57. 57.
    Craig JP, Chen YH, Turnbull PR (2015) Prospective trial of intense pulsed light for the treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci 56:1965–1970CrossRefPubMedGoogle Scholar
  58. 58.
    Goldberg DJ (2012) Current trends in intense pulsed light. J Clin Aesthet Dermatol 5:45–53PubMedPubMedCentralGoogle Scholar
  59. 59.
    Vegunta S, Patel D, Shen JF (2016) Combination therapy of Intense Pulsed Light Therapy and Meibomian Gland Expression (IPL/MGX) can improve dry eye symptoms and meibomian gland function in patients with refractory dry eye: a retrospective analysis. Cornea 35:318–322CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.AugenklinikLudwig-Maximilians-UniversitätMünchenDeutschland

Personalised recommendations