What is the exact definition of stone dust? An in vitro evaluation



To propose a size-related definition of stone dust produced by lithotripsy of urinary stones.


Stone dust was defined as particles small enough to adhere to the following criteria: (1) spontaneous floating under 40 cm H2O irrigation pressure; (2) mean sedimentation time of > 2 s through 10 cm saline solution; (3) fully suitable for aspiration through a 3.6 F working channel. Irrigation, sedimentation, and aspiration tests were set up to evaluate each criterion. Primary outcome was particle size limit agreeing with all three criteria. Stone particles with a given size limit (≤ 2 mm, ≤ 1 mm, ≤ 500 µm, ≤ 250 µm, ≤ 125 µm and ≤ 63 µm) were obtained from laser lithotripsy, including samples from prevailing stone types: calcium oxalate monohydrate, calcium oxalate dihydrate, uric acid, carbapatite, struvite, brushite, and cystine.


All particles ≤ 250 µm from all stone types were in agreement with all three criteria defining stone dust, except for struvite where size limit for a positive irrigation and sedimentation test was ≤ 125 µm.


A size limit of ≤ 250 µm seems to generally adhere to our definition of stone dust, which is based on floating and sedimentation proprieties of stone particles, as well as on the ability to be fully aspirated through the working channel of a flexible ureteroscope.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86–96

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Geraghty RM, Jones P, Somani BK (2017) Worldwide trends of urinary stone disease treatment over the last two decades: a systematic review. J Endourol 31(6):547–556. https://doi.org/10.1089/end.2016.0895

    Article  PubMed  Google Scholar 

  3. 3.

    Doizi S, Keller EX, De Coninck V, Traxer O (2018) Dusting technique for lithotripsy: what does it mean? Nat Rev Urol. https://doi.org/10.1038/s41585-018-0042-9

    Article  PubMed  Google Scholar 

  4. 4.

    Weiss B, Shah O (2016) Evaluation of dusting versus basketing—can new technologies improve stone-free rates? Nat Rev Urol 13(12):726–733. https://doi.org/10.1038/nrurol.2016.172

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bader MJ, Pongratz T, Khoder W, Stief CG, Herrmann T, Nagele U, Sroka R (2015) Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World J Urol 33(4):471–477. https://doi.org/10.1007/s00345-014-1429-8

    Article  PubMed  Google Scholar 

  6. 6.

    Wenzel M, Bultitude M, Salem J (2019) Dusting, fragmenting, popcorning or dustmenting? Curr Opin Urol 29(2):108–112. https://doi.org/10.1097/MOU.0000000000000580

    Article  PubMed  Google Scholar 

  7. 7.

    Lee JW, Park MG, Cho SY (2018) How to perform the dusting technique for calcium oxalate stone phantoms during Ho:YAG laser lithotripsy. BMC Urol 18(1):103. https://doi.org/10.1186/s12894-018-0417-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Dauw CA, Simeon L, Alruwaily AF, Sanguedolce F, Hollingsworth JM, Roberts WW, Faerber GJ, Wolf JS Jr, Ghani KR (2015) Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol 29(11):1221–1230. https://doi.org/10.1089/end.2015.0260

    Article  PubMed  Google Scholar 

  9. 9.

    Pietropaolo A, Jones P, Whitehurst L, Somani BK (2019) Role of 'dusting and pop-dusting' using a high-powered (100 W) laser machine in the treatment of large stones (≥ 15 mm): prospective outcomes over 16 months. Urolithiasis 47(4):391–394. https://doi.org/10.1007/s00240-018-1076-4

    Article  PubMed  Google Scholar 

  10. 10.

    Ray ER, Rumsby G, Smith RD (2016) Biochemical composition of urolithiasis from stone dust—a matched-pair analysis. BJU Int 118(4):618–624. https://doi.org/10.1111/bju.13448

    Article  PubMed  Google Scholar 

  11. 11.

    Tobelem G, Economou C, Thomas J, Arvis G (1987) Effects of chemical and radiographic factors on the treatment of renal lithiasis using extracorporeal external shock-wave lithotripsy. Ann Urol (Paris) 21(5):362–367

    CAS  Google Scholar 

  12. 12.

    Aldoukhi AH, Roberts WW, Hall TL, Ghani KR (2017) Holmium laser lithotripsy in the new stone age: dust or bust? Front Surg 4:57. https://doi.org/10.3389/fsurg.2017.00057

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Elhilali MM, Badaan S, Ibrahim A, Andonian S (2017) Use of the moses technology to improve holmium laser lithotripsy outcomes: a preclinical study. J Endourol 31(6):598–604. https://doi.org/10.1089/end.2017.0050

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Li R, Ruckle D, Keheila M, Maldonado J, Lightfoot M, Alsyouf M, Yeo A, Abourbih SR, Olgin G, Arenas JL, Baldwin DD (2017) High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi. J Endourol 31(3):272–277. https://doi.org/10.1089/end.2016.0547

    Article  PubMed  Google Scholar 

  15. 15.

    Matlaga BR, Chew B, Eisner B, Humphreys M, Knudsen B, Krambeck A, Lange D, Lipkin M, Miller NL, Monga M, Pais V, Sur RL, Shah O (2018) Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol 32(1):1–6. https://doi.org/10.1089/end.2017.0641

    Article  PubMed  Google Scholar 

  16. 16.

    Aldoukhi AH, Black KM, Ghani KR (2019) Emerging laser techniques for the management of stones. Urol Clin N Am 46(2):193–205. https://doi.org/10.1016/j.ucl.2018.12.005

    Article  Google Scholar 

  17. 17.

    Santiago JE, Hollander AB, Soni SD, Link RE, Mayer WA (2017) To dust or not to dust: a systematic review of ureteroscopic laser lithotripsy techniques. Curr Urol Rep 18(4):32. https://doi.org/10.1007/s11934-017-0677-8

    Article  PubMed  Google Scholar 

  18. 18.

    International Standardization Organization ISO 4225:1994 (2015) Air quality—General aspects—vocabulary, last reviewed and confirmed in 2015. https://www.iso.org/standard/10025.html. Accessed 6 Jun 2019

  19. 19.

    WHO (1999) World Heath Organization Hazard prevention and control in the work environment: airborne dust. https://www.who.int/occupational_health/publications/airdust/en/. Accessed 6 Jun 2019

  20. 20.

    Tokas T, Herrmann TRW, Skolarikos A, Nagele U, Training, Research in Urological S, Technology G (2018) Pressure matters: intrarenal pressures during normal and pathological conditions, and impact of increased values to renal physiology. World J Urol. https://doi.org/10.1007/s00345-018-2378-4

    Article  PubMed  Google Scholar 

  21. 21.

    Tokas T, Skolarikos A, Herrmann TRW, Nagele U, Training, Research in Urological S, Technology G (2018) Pressure matters 2: intrarenal pressure ranges during upper-tract endourological procedures. World J Urol. https://doi.org/10.1007/s00345-018-2379-3

    Article  PubMed  Google Scholar 

  22. 22.

    D'yakonov GI, Konov VI, Mikhailov VA, Nikolaev DA, Pak SK, Shcherbakov IA (1991) Comparative performance of infra-red solid-state lasers in laser lithotripsy. In: Proceedings of SPIE—The International Society for Optical Engineering 1421, pp 156–163

  23. 23.

    Boscaini M, Piccinni-Leopardi M, Andreotti F, Montori A (1994) Gall stone pulverisation strategy in patients treated with extracorporeal lithotripsy and follow up results of maintenance treatment with ursodeoxycholic acid. Gut 35(1):117–121. https://doi.org/10.1136/gut.35.1.117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kang M, Son H, Jeong H, Cho MC, Cho SY (2016) Clearance rates of residual stone fragments and dusts after endoscopic lithotripsy procedures using a holmium laser: 2-year follow-up results. World J Urol 34(11):1591–1597. https://doi.org/10.1007/s00345-016-1807-5

    Article  PubMed  Google Scholar 

  25. 25.

    Keller EX, de Coninck V, Audouin M, Doizi S, Bazin D, Daudon M, Traxer O (2019) Fragments and dust after Holmium laser lithotripsy with or without "Moses technology": how are they different? J Biophotonics 12(4):e201800227. https://doi.org/10.1002/jbio.201800227

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Pace KT, Tariq N, Dyer SJ, Weir MJ, D’A Honey RJ (2001) Mechanical percussion, inversion and diuresis for residual lower pole fragments after shock wave lithotripsy: a prospective, single blind, randomized controlled trial. J Urol 166(6):2065–2071

    CAS  Article  Google Scholar 

  27. 27.

    Keller EX, De Coninck V, Audouin M, Doizi S, Bazin D, Daudon M, Traxer O (2018) Fragments and dust after holmium laser lithotripsy with or without "Moses Technology": how are they different? J Biophotonics. https://doi.org/10.1002/jbio.201800227

    Article  PubMed  Google Scholar 

  28. 28.

    Keller EX, De Coninck V, Traxer O (2019) Next-generation fiberoptic and digital ureteroscopes. Urol Clin N Am 46(2):147–163. https://doi.org/10.1016/j.ucl.2018.12.001

    Article  Google Scholar 

  29. 29.

    Zeng T, Tiselius HG, Huang J, Deng T, Zeng G, Wu W (2019) Effect of mechanical percussion combined with patient position change on the elimination of upper urinary stones/fragments: a systematic review and meta-analysis. Urolithiasis. https://doi.org/10.1007/s00240-019-01140-2

    Article  PubMed  Google Scholar 

  30. 30.

    Inoue T, Murota T, Okada S, Hamamoto S, Muguruma K, Kinoshita H, Matsuda T, Group SS (2015) Influence of pelvicaliceal anatomy on stone clearance after flexible ureteroscopy and holmium laser lithotripsy for large renal stones. J Endourol 29(9):998–1005. https://doi.org/10.1089/end.2015.0071

    Article  PubMed  Google Scholar 

  31. 31.

    Jessen JP, Honeck P, Knoll T, Wendt-Nordahl G (2014) Flexible ureterorenoscopy for lower pole stones: influence of the collecting system's anatomy. J Endourol 28(2):146–151. https://doi.org/10.1089/end.2013.0401

    Article  PubMed  Google Scholar 

  32. 32.

    Kronenberg P, Traxer O (2014) The truth about laser fiber diameters. Urology 84(6):1301–1307. https://doi.org/10.1016/j.urology.2014.08.017

    Article  PubMed  Google Scholar 

  33. 33.

    Patel N, Chew B, Knudsen B, Lipkin M, Wenzler D, Sur RL (2014) Accuracy of endoscopic intraoperative assessment of urologic stone size. J Endourol 28(5):582–586. https://doi.org/10.1089/end.2013.0707

    Article  PubMed  Google Scholar 

  34. 34.

    Cordes J, Teske L, Nguyen F, Pinkowski W, Sievert KD, Vonthein R (2016) A comparison between an in vitro ureteroscopic stone size estimation and the stone size measurement with the help of a scale on stone baskets. World J Urol 34(9):1303–1309. https://doi.org/10.1007/s00345-016-1774-x

    Article  PubMed  Google Scholar 

  35. 35.

    Aleksandrov AA, Dzhuraeva EV, Utenkov VF (2012) Viscosity of aqueous solutions of sodium chloride. High Temp+ 50(3):354–358. https://doi.org/10.1134/s0018151x12030029

    CAS  Article  Google Scholar 

  36. 36.

    Aldoukhi AH, Ghani KR, Hall TL, Roberts WW (2017) Thermal response to high-power holmium laser lithotripsy. J Endourol 31(12):1308–1312. https://doi.org/10.1089/end.2017.0679

    Article  PubMed  Google Scholar 

  37. 37.

    Aldoukhi AH, Hall TL, Ghani KR, Maxwell AD, MacConaghy B, Roberts WW (2018) Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model. J Endourol 32(8):724–729. https://doi.org/10.1089/end.2018.0395

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Buttice S, Sener TE, Proietti S, Dragos L, Tefik T, Doizi S, Traxer O (2016) Temperature changes inside the kidney: what happens during holmium:yttrium–aluminium–garnet laser usage? J Endourol 30(5):574–579. https://doi.org/10.1089/end.2015.0747

    Article  PubMed  Google Scholar 

  39. 39.

    Hein S, Petzold R, Schoenthaler M, Wetterauer U, Miernik A (2018) Thermal effects of Ho:YAG laser lithotripsy: real-time evaluation in an in vitro model. World J Urol 36(9):1469–1475. https://doi.org/10.1007/s00345-018-2303-x

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Wollin DA, Carlos EC, Tom WR, Simmons WN, Preminger GM, Lipkin ME (2018) Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model. J Endourol 32(1):59–63. https://doi.org/10.1089/end.2017.0658

    Article  PubMed  Google Scholar 

  41. 41.

    Hardy LA, Vinnichenko V, Fried NM (2019) High power holmium:YAG versus thulium fiber laser treatment of kidney stones in dusting mode: ablation rate and fragment size studies. Lasers Surg Med 51(6):522–530. https://doi.org/10.1002/lsm.23057

    Article  PubMed  Google Scholar 

  42. 42.

    Traxer O, Keller EX (2019) Thulium fiber laser: the new player for kidney stone treatment? A comparison with Holmium:YAG laser. World J Urol. https://doi.org/10.1007/s00345-019-02654-5

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Kronenberg P, Traxer O (2019) The laser of the future: reality and expectations about the new thulium fiber laser—a systematic review. Translat Androl Urol 8(S4):S398–S417. https://doi.org/10.21037/tau.2019.08.01

    Article  Google Scholar 

Download references


Dr. Etienne Xavier Keller is a consultant for Olympus, Recordati and Debiopharm, and has been supported by a Travel Grant from the University Hospital Zurich and from the Kurt and Senta Herrmann Foundation 2017–2018. Dr. Vincent De Coninck is a consultant for Boston Scientific, BD Bard and Coloplast, and has been supported by the EUSP scholarship from the European Association of Urology and by a Grant from the Belgische Vereniging voor Urologie (BVU) from 2017 to 2018. Dr. Steeve Doizi is a consultant for Coloplast and Boston Scientific. Prof. Michel Daudon is a consultant for Advicenne. Prof. Olivier Traxer is a consultant for Coloplast, Rocamed, Olympus, EMS, Boston Scientific and IPG Medical.

Author information




EXK: protocol/project development, data collection or management, data analysis, and manuscript writing/editing. VDC: protocol/project development, data collection or management, data analysis, and manuscript writing/editing. SD: data analysis and manuscript writing/editing. MD: protocol/project development, data collection or management, data analysis, and manuscript writing/editing. OT: protocol/project development, data analysis, and manuscript writing/editing.

Corresponding author

Correspondence to Olivier Traxer.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keller, E.X., De Coninck, V., Doizi, S. et al. What is the exact definition of stone dust? An in vitro evaluation. World J Urol 39, 187–194 (2021). https://doi.org/10.1007/s00345-020-03178-z

Download citation


  • Urolithiasis
  • Stone dust
  • Laser lithotripsy
  • Stone composition
  • Ureteroscopy
  • Percutaneous nephrolithotomy