Robotic-assisted kidney transplant: a single center experience with median follow-up of 2.8 years



The main aim of the paper is to report a single-centre experience with RAKT, focusing on surgical, perioperative and functional outcomes at a median follow-up of 2.8 years.


Data of 26 RAKT patients was prospectively collected from December 2014 to February 2019 with follow-up of up to 55 months. All donors were done laparoscopically. We followed Vattikuti–Medanta technique with modification of using pfannenstiel incision instead of Gelpoint and patient positioned in steep Trendelenburg position (30°) with leg split position. Hypothermia was maintained using a “modified graft hypothermia jacket”. The engrafted kidney is oriented with the vessels being tagged with Prolene sutures.


The mean BMI was 26.1 ± 4.7. The mean warm, cold and total ischemia times were 4.8 ± 1.1, 113.8 ± 20.9 and 118.7 ± 21.2 min, respectively. Mean rewarming time was 62.5 ± 10 min. The mean post-operative day (POD) 1, 3, 7, 30, 6 months, 1 year and most recent creatinine was 3.4, 2.4, 1.8, 1.4,1.2, 1.2 and 1.69 mg/dl. There was no case of delayed graft dysfunction (DGF) with graft survival of 1.8-55 months. The mean GFR at POD 1, 1 month and 1 year was 24, 53.16 and 64.6. We had two intraoperative complications—one topsy turvy graft placement with anastomosis of donor ureter to native ureter and other had to be converted to open technique after anastomosis to control graft surface bleeding. Three postoperative complications—one patient has graft pyelonephritis which was managed conservatively with antibiotics. Two patients had lymphocele. One patient was managed with just aspiration while the other required laparoscopic de-roofing of the lymphocele. The mean hospital stay was 13.5 ± 3 days.


RAKT is feasible and safe only if performed by surgeons with appropriate background in robotic surgery and kidney transplantation after proper surgical training at experienced centres in the mid-term follow-up. Further studies need to confirm the long-term safety of RAKT.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Collins AJ, Foley RN, Chavers B, Gilbertson D, Herzog C et al (2012) United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease and endstage renal disease in the United States. Am J Kidney Dis 59(Suppl 1:A7):e1–e420

    Google Scholar 

  2. 2.

    Murray JE (2001) Surgery of the soul: reflections of a curious career. Science History Publications, Canton

    Google Scholar 

  3. 3.

    Rosales A, Salvador JT, Urdaneta G, Patiño D, Montlleó M, Esquena S, Caffaratti J, de Leon JP, Guirado L, Villavicencio H (2010) Laparoscopic kidney transplantation. Eur Urol 57(1):164–167

    Article  Google Scholar 

  4. 4.

    Modi P, Rizvi J, Pal B, Bharadwaj R, Trivedi P, Trivedi A et al (2011) Laparoscopic kidney transplantation: an initial experience. Am J Transplant 11:1320–1324

    CAS  Article  Google Scholar 

  5. 5.

    Modi P, Thyagaraj K, Rizvi SJ, Vyas J, Padhi S, Shah K et al (2012) Laparoscopic en bloc kidney transplantation. Indian J Urol 28:362–365

    Article  Google Scholar 

  6. 6.

    Modi P, Pal B, Modi J, Singla S, Patel C, Patel R et al (2013) Retroperitoneoscopic living-donor nephrectomy and laparoscopic kidney transplantation: experience of initial 72 cases. Transplantation 95:100–105

    Article  Google Scholar 

  7. 7.

    Hoznek A, Zaki SK, Samadi DB et al (2002) Robotic assisted kidney transplantation: an initial experience. J Urol 167:1604–1606

    Article  Google Scholar 

  8. 8.

    Giulianotti P, Gorodner V, Sbrana F et al (2010) Robotic transabdominal kidney transplantation in a morbidly obese patient. Am J Transplant 10:1478–1482

    CAS  Article  Google Scholar 

  9. 9.

    Boggi U, Vistoli F, Signori S et al (2011) Robotic renal transplantation: first European case. Transpl Int 24:213–218

    Article  Google Scholar 

  10. 10.

    Yarlagadda SG, Coca SG, Formica RN, Poggio ED, Parikh CR (2009) Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transpl 24(3):1039–1047.

    Article  Google Scholar 

  11. 11.

    Menon M, Sood A, Bhandari M et al (2014) Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute—Medanta technique (IDEAL phase 2a). Eur Urol 65:991–1000

    Article  Google Scholar 

  12. 12.

    Sood A, Ghosh P, Jeong W et al (2015) Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes. Transplantation 99:316–323

    CAS  Article  Google Scholar 

  13. 13.

    Breda A, Territo A, Gausa L et al (2017) Robotic kidney transplantation: one year after the beginning. World J Urol 35:1507–1515

    Article  Google Scholar 

  14. 14.

    Breda A, Territo A, Gausa L et al (2017) Robot-assisted kidney transplantation: the European experience. Eur Urol.

    Article  PubMed  Google Scholar 

  15. 15.

    Tsai MK, Lee CY, Yang CY et al (2014) Robot-assisted renal transplantation in the retroperitoneum. Transpl Int 27:452–457

    Article  Google Scholar 

  16. 16.

    Tzvetanov I, Giulianotti PC, Bejarano-Pineda L et al (2013) Robotic-assisted kidney transplantation. Surg Clin North Am 93:1309–1323

    Article  Google Scholar 

  17. 17.

    Tuğcu V, Sener NC, Sahin S, Yavuzsan AH, Akbay FG, Apaydin S (2016) Robotic kidney transplantation: the Bakirkoy experience. Turk J Urol 42:295–298

    Article  Google Scholar 

  18. 18.

    Oberholzer J, Giulianotti P, Danielson KK et al (2013) Minimally invasive robotic kidney transplantation for obese patients previously denied access to transplantation. Am J Transplant 13:721–728

    CAS  Article  Google Scholar 

  19. 19.

    Wagenaar S, Nederhoed JH, Hoksbergen AWJ, Bonjer HJ, Wisselink W, van Ramshorst GH (2017) Minimally invasive, laparoscopic, and robot- ic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review. Eur Urol 72:205–217

    Article  Google Scholar 

  20. 20.

    Vignolini G, Campi R, Sessa F, Greco I, Larti A, Giancane S, Sebastianelli A, Gacci M, Peris A, Li Marzi V, Breda A, Siena G, Serni S (2019) Development of a robot-assisted kidney transplantation programme from deceased donors in a referral academic centre: technical nuances and preliminary results. BJU Int 123:474–484.

    Article  PubMed  Google Scholar 

  21. 21.

    Vignolini G, Sessa F, Greco I, Pili A, Giancane S, Sebastianelli A, Siena G, Gacci M, Li Marzi V, Campi R, Serni S (2018) Robotic kidney transplantation from a brain-dead deceased donor in a patient with autosomal dominant polycystic kidney disease: first case report. J Endourol Case Rep 4.1:124–128

    Article  Google Scholar 

  22. 22.

    Siena G, Campi R, Decaestecker K, Tuğcu V, Sahin S, Alcaraz A, Musquera M, Territo A, Gausa L, Randon C, Stockle M, Janssen M, Fornara P, Mohammed N, Guirado L, Facundo C, Doumerc N, Vignolini G, Breda A, Serni S (2018) Robot-assisted kidney transplantation with regional hypothermia using grafts with multiple vessels after extracorporeal vascular reconstruction: results from the European Association of Urology Robotic Urology Section Working Group. Eur Urol Focus 4(2):175–184

    Article  Google Scholar 

  23. 23.

    Territo A, Gausa L, Alcaraz A, Musquera M, Doumerc N, Decaestecker K, Desender L, Stockle M, Janssen M, Fornara P, Mohammed N, Siena G, Serni S, Sahin S, Tuǧcu V, Basile G, Breda A (2018) European experience of robot-assisted kidney transplantation: minimum of 1-year follow-up. BJU Int 122:255–262.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Vignolini G, Sessa F, Greco I, Cito G, Vanacore D, Cocci A et al (2019) Intraoperative assessment of ureteral and graft reperfusion during robotic kidney transplantation with indocyanine green fluorescence videography. Minerva Urol Nefrol 71:79–84.

    Article  PubMed  Google Scholar 

  25. 25.

    Adiyat KT, Vinod KK, Vishnu R, Ramaprasad MK, Unni VN, John RP (2018) Robotic-assisted renal transplantation with total extraperitonealization of the graft: experience of 34 cases. J Robot Surg 12(3):535–540

    Article  Google Scholar 

  26. 26.

    Bruyère F, Pradère B, d’Arcier BF, Boutin JM, Buchler M, Brichart N (2018) Robot-assisted renal transplantation using the retroperitoneal approach (RART) with more than one year follow up: description of the technique and results. Progrès en Urol 28(1):48–54

    Article  Google Scholar 

  27. 27.

    Tuğcu VŞNŞhS (2018) Robo -assisted kidney transplantation: comparison of the first 40 cases of open vs robot-assisted transplantations by a single surgeon. BJU Int 121(2):275–280.

    Article  PubMed  Google Scholar 

  28. 28.

    Ahlawat RK, Tugcu V, Arora S et al (2018) Learning curves and timing of surgical trials: robotic kidney transplantation with regional hypothermia. J Endourol.

    Article  PubMed  Google Scholar 

  29. 29.

    Sood A, Ghani KR, Ahlawat R et al (2014) Application of the statistical process control method for prospective patient safety monitoring during the learning phase: robotic kidney transplantation with regional hypothermia (IDEAL phase 2a-b). Eur Urol 66(2):371–378.

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arvind Ganpule.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganpule, A., Patil, A., Singh, A. et al. Robotic-assisted kidney transplant: a single center experience with median follow-up of 2.8 years. World J Urol 38, 2651–2660 (2020).

Download citation


  • Kidney transplantation
  • Robot-assisted kidney transplantation
  • RAKT
  • Robotic surgery
  • Vascular anastomosis