Johnson DE, Cromeens DM, Price RE (1992) Use of the holmium:YAG laser in urology. Lasers Surg Med 12(4):353–363
CAS
PubMed
Article
Google Scholar
Sayer J, Johnson DE, Price RE, Cromeens DM (1993) Ureteral lithotripsy with the Holmium:YAG laser. J Clin Laser Med Surg 11(2):61–65
Article
Google Scholar
Teichman JM, Vassar GJ, Bishoff JT, Bellman GC (1998) Holmium:YAG Lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol 159(1):17–23
CAS
PubMed
Article
Google Scholar
Keller EX, De Coninck V, Audouin M, Doizi S, Bazin D, Daudon M, Traxer O (2018) Fragments and Dust after Holmium Laser Lithotripsy with or without “Moses Technology”: How are they different? J Biophotonics. https://doi.org/10.1002/jbio.201800227
PubMed
Article
Google Scholar
Kronenberg P, Traxer O (2014) The truth about laser fiber diameters. Urology 84(6):1301–1307. https://doi.org/10.1016/j.urology.2014.08.017
PubMed
Article
Google Scholar
Kronenberg P, Traxer O (2015) Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers. World J Urol 33(4):463–469. https://doi.org/10.1007/s00345-014-1395-1
PubMed
Article
Google Scholar
Emiliani E, Talso M, Haddad M, Pouliquen C, Derman J, Cote JF, Doizi S, Millan F, Berthe L, Audouin M, Traxer O (2018) The true ablation effect of Holmium YAG laser on soft tissue. J Endourol 32(3):230–235. https://doi.org/10.1089/end.2017.0835
PubMed
Article
Google Scholar
Gilling PJ, Cass CB, Cresswell MD, Fraundorfer MR (1996) Holmium laser resection of the prostate: preliminary results of a new method for the treatment of benign prostatic hyperplasia. Urology 47(1):48–51
CAS
PubMed
Article
Google Scholar
Bach T, Muschter R, Sroka R, Gravas S, Skolarikos A, Herrmann TR, Bayer T, Knoll T, Abbou CC, Janetschek G, Bachmann A, Rassweiler JJ (2012) Laser treatment of benign prostatic obstruction: basics and physical differences. Eur Urol 61(2):317–325. https://doi.org/10.1016/j.eururo.2011.10.009
PubMed
Article
Google Scholar
Sea J, Jonat LM, Chew BH, Qiu J, Wang B, Hoopman J, Milner T, Teichman JM (2012) Optimal power settings for Holmium:YAG Lithotripsy. J Urol 187(3):914–919. https://doi.org/10.1016/j.juro.2011.10.147
PubMed
Article
Google Scholar
Kronenberg P, Traxer O (2014) In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy—a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters. BJU Int 114(2):261–267. https://doi.org/10.1111/bju.12567
PubMed
Article
Google Scholar
Dauw CA, Simeon L, Alruwaily AF, Sanguedolce F, Hollingsworth JM, Roberts WW, Faerber GJ, Wolf JS Jr, Ghani KR (2015) Contemporary practice patterns of flexible ureteroscopy for treating renal stones: results of a worldwide survey. J Endourol 29(11):1221–1230. https://doi.org/10.1089/end.2015.0260
PubMed
Article
Google Scholar
Doizi S, Keller EX, De Coninck V, Traxer O (2018) Dusting technique for lithotripsy: what does it mean? Nat Rev Urol. https://doi.org/10.1038/s41585-018-0042-9
PubMed
Article
Google Scholar
Weiss B, Shah O (2016) Evaluation of dusting versus basketing—can new technologies improve stone-free rates? Nat Rev Urol 13(12):726–733. https://doi.org/10.1038/nrurol.2016.172
CAS
PubMed
Article
Google Scholar
Aldoukhi AH, Roberts WW, Hall TL, Ghani KR (2017) Holmium Laser Lithotripsy in the new stone age: dust or bust? Front Surg 4:57. https://doi.org/10.3389/fsurg.2017.00057
PubMed
PubMed Central
Article
Google Scholar
Tracey J, Gagin G, Morhardt D, Hollingsworth J, Ghani KR (2018) Ureteroscopic high-frequency dusting utilizing a 120-W Holmium laser. J Endourol 32(4):290–295. https://doi.org/10.1089/end.2017.0220
PubMed
Article
Google Scholar
Turk C, Neisius A, Petrik A, Seitz C, Skolarikos A, Knoll T (2018) EAU guidelines on urolithiasis. Last update March 2018. https://uroweb.org/guideline/urolithiasis. Accessed 25 Sep 2018
Turk C, Petrik A, Sarica K, Seitz C, Skolarikos A, Straub M, Knoll T (2016) EAU Guidelines on interventional treatment for urolithiasis. Eur Urol 69(3):475–482. https://doi.org/10.1016/j.eururo.2015.07.041
PubMed
Article
Google Scholar
Assimos D, Krambeck A, Miller NL, Monga M, Murad MH, Nelson CP, Pace KT, Pais VM Jr, Pearle MS, Preminger GM, Razvi H, Shah O, Matlaga BR (2016) Surgical management of stones: American Urological Association/Endourological Society Guideline, Part II. J Urol 196(4):1161–1169. https://doi.org/10.1016/j.juro.2016.05.091
PubMed
Article
Google Scholar
Fried NM, Irby PB (2018) Advances in laser technology and fibre-optic delivery systems in lithotripsy. Nat Rev Urol. https://doi.org/10.1038/s41585-018-0035-8
PubMed
Article
Google Scholar
Soret J-L (1878) Sur les spectres d’absorption ultra-violets des terres de la gadolinite. C R Acad Sci 87:1062
Google Scholar
Soret J-L (1879) Sur le spectre des terres faisant partie du groupe de l’yttria. C R Acad Sci 89:521
Google Scholar
Cleve PT (1879) Sur deux nouveaux éléments dans l’erbine. C R Acad Sci 89(9):478–480
Google Scholar
Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ (1994) Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg Med 14(3):258–268
CAS
PubMed
Article
Google Scholar
Talso M, Emiliani E, Haddad M, Berthe L, Baghdadi M, Montanari E, Traxer O (2016) Laser fiber and flexible ureterorenoscopy: the safety distance concept. J Endourol 30(12):1269–1274. https://doi.org/10.1089/end.2016.0209
PubMed
Article
Google Scholar
Hale GM, Querry MR (1973) Optical constants of water in the 200-nm to 200-µm wavelength region. Appl Opt 12(3):555–563
CAS
PubMed
Article
Google Scholar
Chan KF, Vassar GJ, Pfefer TJ, Teichman JM, Glickman RD, Weintraub ST, Welch AJ (1999) Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi. Lasers Surg Med 25(1):22–37
CAS
PubMed
Article
Google Scholar
Vassar GJ, Chan KF, Teichman JM, Glickman RD, Weintraub ST, Pfefer TJ, Welch AJ (1999) Holmium:YAG lithotripsy: photothermal mechanism. J Endourol 13(3):181–190. https://doi.org/10.1089/end.1999.13.181
CAS
PubMed
Article
Google Scholar
Albagli D, Perelman LT, Janes GS, Von Rosenberg C, Itzkan I, Feld MS (1994) Inertially confined ablation of biological tissue. Lasers Life Sci 6(1):55–68
Google Scholar
Fried D, Zuerlein M, Featherstone JDB, Seka W, Duhn C, McCormack SM (1998) IR laser ablation of dental enamel: mechanistic dependence on the primary absorber. Appl Surf Sci 127–129:852–856
Article
Google Scholar
Altshuler GB, Belikov AV, Sinelnik YA (2001) A laser-abrasive method for the cutting of enamel and dentin. Lasers Surg Med 28(5):435–444
CAS
PubMed
Article
Google Scholar
Khan SR, Hackett RL (1993) Role of organic matrix in urinary stone formation: an ultrastructural study of crystal matrix interface of calcium oxalate monohydrate stones. J Urol 150(1):239–245
CAS
PubMed
Article
Google Scholar
Vordos N, Giannakopoulos S, Vansant EF, Kalaitzis C, Nolan JW, Bandekas DV, Karavasilis I, Mitropoulos AC, Touloupidis S (2018) Small-angle X-ray scattering (SAXS) and nitrogen porosimetry (NP): two novel techniques for the evaluation of urinary stone hardness. Int Urol Nephrol 50(10):1779–1785. https://doi.org/10.1007/s11255-018-1961-3
CAS
PubMed
Article
Google Scholar
Nandakumar V, Krishnasamy K, Dhavamani J, Shroff S, Doble M (2012) Comparative characterization of renal calculi from patients with clinical disorders. Clin Biochem 45(13–14):1097–1098. https://doi.org/10.1016/j.clinbiochem.2012.04.015
PubMed
Article
Google Scholar
Chan KF, Pfefer TJ, Teichman JM, Welch AJ (2001) A perspective on laser lithotripsy: the fragmentation processes. J Endourol 15(3):257–273. https://doi.org/10.1089/089277901750161737
CAS
PubMed
Article
Google Scholar
Fried NM (2018) Recent advances in infrared laser lithotripsy. Biomed Optics Express. https://doi.org/10.1364/boe.9.004552
Article
Google Scholar
Hardy LA, Irby PB, Fried NM (2018) Scanning electron microscopy of real and artificial kidney stones before and after Thulium fiber laser ablation in air and water. Proc SPIE. https://doi.org/10.1117/1112.2285069
Article
Google Scholar
Haddad M, Emiliani E, Rouchausse Y, Coste F, Doizi S, Berthe L, Buttice S, Somani B, Traxer O (2017) Impact of the curve diameter and laser settings on laser fiber fracture. J Endourol 31(9):918–921. https://doi.org/10.1089/end.2017.0006
PubMed
Article
Google Scholar
Nazif OA, Teichman JM, Glickman RD, Welch AJ (2004) Review of laser fibers: a practical guide for urologists. J Endourol 18(9):818–829. https://doi.org/10.1089/end.2004.18.818
PubMed
Article
Google Scholar
Scott NJ, Cilip CM, Fried NM (2009) Thulium fiber laser ablation of urinary stones through small-core optical fibers. IEEE J Sel Top Quant 15(2):435–440. https://doi.org/10.1109/jstqe.2008.2012133
CAS
Article
Google Scholar
Jackson SD, Lauto A (2002) Diode-pumped fiber lasers: a new clinical tool? Lasers Surg Med 30(3):184–190
PubMed
Article
Google Scholar
Blackmon RL, Hutchens TC, Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Thulium fiber laser ablation of kidney stones using a 50-μm-core silica optical fiber. Opt Eng. https://doi.org/10.1117/1.oe.54.1.011004
Article
Google Scholar
Gilling PJ, Cass CB, Malcolm AR, Fraundorfer MR (1995) Combination holmium and Nd:YAG laser ablation of the prostate: initial clinical experience. J Endourol 9(2):151–153. https://doi.org/10.1089/end.1995.9.151
CAS
PubMed
Article
Google Scholar
Humphreys MR, Shah OD, Monga M, Chang YH, Krambeck AE, Sur RL, Miller NL, Knudsen BE, Eisner BH, Matlaga BR, Chew BH (2018) Dusting versus basketing during ureteroscopy—which technique is more efficacious? A prospective multicenter trial from the EDGE research consortium. J Urol 199(5):1272–1276. https://doi.org/10.1016/j.juro.2017.11.126
PubMed
Article
Google Scholar
Matlaga BR, Chew B, Eisner B, Humphreys M, Knudsen B, Krambeck A, Lange D, Lipkin M, Miller NL, Monga M, Pais V, Sur RL, Shah O (2018) Ureteroscopic laser lithotripsy: a review of dusting vs fragmentation with extraction. J Endourol 32(1):1–6. https://doi.org/10.1089/end.2017.0641
PubMed
Article
Google Scholar
Pasqui F, Dubosq F, Tchala K, Tligui M, Gattegno B, Thibault P, Traxer O (2004) Impact on active scope deflection and irrigation flow of all endoscopic working tools during flexible ureteroscopy. Eur Urol 45(1):58–64
PubMed
Article
Google Scholar
Kronenberg P, Traxer O (2013) V1718 laser fibers, pulse energy and retropulsion-what we can see and what we can’t. J Urol 189(4):e707
Google Scholar
Lee H, Ryan RT, Kim J, Choi B, Arakeri NV, Teichman JM, Welch AJ (2004) Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy. J Biomech Eng 126(4):506–515
PubMed
Article
Google Scholar
Spore SS, Teichman JM, Corbin NS, Champion PC, Williamson EA, Glickman RD (1999) Holmium: YAG lithotripsy: optimal power settings. J Endourol 13(8):559–566. https://doi.org/10.1089/end.1999.13.559
CAS
PubMed
Article
Google Scholar
Wilson C, Kennedy JD, Irby P, Fried N (2018) Miniature ureteroscope distal tip designs for potential use in thulium fiber laser lithotripsy. J Biomed Opt 23(7):1–9. https://doi.org/10.1117/1.JBO.23.7.076003
PubMed
Article
Google Scholar
Keller EX, De Coninck V, Traxer O (2019) Next generation fiberoptic and digital ureteroscopes. Urol Clin North Am. https://doi.org/10.1016/j.ucl.2018.12.001
PubMed
Article
Google Scholar
Mues AC, Teichman JM, Knudsen BE (2009) Quantification of holmium:yttrium aluminum garnet optical tip degradation. J Endourol 23(9):1425–1428. https://doi.org/10.1089/end.2009.0384
PubMed
Article
Google Scholar
Wollin DA, Ackerman A, Yang C, Chen T, Simmons WN, Preminger GM, Lipkin ME (2017) Variable pulse duration from a new Holmium:YAG laser: the effect on stone comminution, fiber tip degradation, and retropulsion in a dusting model. Urology 103:47–51. https://doi.org/10.1016/j.urology.2017.01.007
PubMed
Article
Google Scholar
Hardy LA, Kennedy JD, Wilson CR, Irby PB, Fried NM (2017) Analysis of thulium fiber laser induced bubble dynamics for ablation of kidney stones. J Biophotonics 10(10):1240–1249. https://doi.org/10.1002/jbio.201600010
CAS
PubMed
Article
Google Scholar
Blackmon RL, Irby PB, Fried NM (2010) Holmium:YAG (lambda = 2,120 nm) versus thulium fiber (lambda = 1,908 nm) laser lithotripsy. Lasers Surg Med 42(3):232–236. https://doi.org/10.1002/lsm.20893
PubMed
Article
Google Scholar
Blackmon RL, Irby PB, Fried NM (2011) Comparison of holmium:YAG and thulium fiber laser lithotripsy: ablation thresholds, ablation rates, and retropulsion effects. J Biomed Opt 16(7):071403. https://doi.org/10.1117/1.3564884
CAS
PubMed
Article
Google Scholar
Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Thulium fiber laser lithotripsy in an in vitro ureter model. J Biomed Opt 19(12):128001. https://doi.org/10.1117/1.JBO.19.12.128001
PubMed
Article
Google Scholar
Wilson CR, Hardy LA, Irby PB, Fried NM (2016) Microscopic analysis of laser-induced proximal fiber tip damage during holmium:YAG and thulium fiber laser lithotripsy. Opt Eng. https://doi.org/10.1117/1.oe.55.4.046102
Article
Google Scholar
Fried NM (2005) Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt Thulium fiber laser at 1.94 microm. Lasers Surg Med 37(1):53–58. https://doi.org/10.1002/lsm.20196
PubMed
Article
Google Scholar
Blackmon RL, Irby PB, Fried NM (2010) Thulium fiber laser lithotripsy using tapered fibers. Lasers Surg Med 42(1):45–50. https://doi.org/10.1002/lsm.20883
PubMed
Article
Google Scholar
Blackmon RL, Irby PB, Fried NM (2012) Enhanced thulium fiber laser lithotripsy using micro-pulse train modulation. J Biomed Opt 17(2):028002. https://doi.org/10.1117/1.JBO.17.2.028002
CAS
PubMed
Article
Google Scholar
Hutchens TC, Blackmon RL, Irby PB, Fried NM (2013) Detachable fiber optic tips for use in thulium fiber laser lithotripsy. J Biomed Opt. https://doi.org/10.1117/1.jbo.18.3.038001
PubMed
Article
Google Scholar
Hutchens TC, Blackmon RL, Irby PB, Fried NM (2013) Hollow steel tips for reducing distal fiber burn-back during thulium fiber laser lithotripsy. J Biomed Opt 18(7):078001. https://doi.org/10.1117/1.JBO.18.7.078001
PubMed
Article
Google Scholar
Hardy LA, Wilson CR, Irby PB, Fried NM (2014) Rapid thulium fiber laser lithotripsy at pulse rates up to 500 Hz using a stone basket. IEEE J Sel Top Quant 20(5):138–141. https://doi.org/10.1109/jstqe.2014.2305715
Article
Google Scholar
Wilson CR, Hardy LA, Irby PB, Fried NM (2015) Collateral damage to the ureter and Nitinol stone baskets during thulium fiber laser lithotripsy. Lasers Surg Med 47(5):403–410. https://doi.org/10.1002/lsm.22348
PubMed
Article
Google Scholar
Wilson CR, Hardy LA, Kennedy JD, Irby PB, Fried NM (2016) Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones. J Biomed Opt 21(1):18003. https://doi.org/10.1117/1.JBO.21.1.018003
PubMed
Article
Google Scholar
Hutchens TC, Gonzalez DA, Irby PB, Fried NM (2017) Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy. J Biomed Opt 22(1):18001. https://doi.org/10.1117/1.JBO.22.1.018001
PubMed
Article
Google Scholar
Gonzalez DA, Hardy LA, Hutchens TC, Irby P, Fried D (2018) Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips. Opt Eng. https://doi.org/10.1117/1.oe.57.3.036106
Article
Google Scholar
Isner JM, Lucas AR, Fields CD (1988) Laser therapy in the treatment of cardiovascular disease. Br J Hosp Med 40(3):172–178
CAS
PubMed
Google Scholar
Blackmon RL, Case JR, Trammell SR, Irby PB, Fried NM (2013) Fiber-optic manipulation of urinary stone phantoms using holmium:YAG and thulium fiber lasers. J Biomed Opt 18(2):28001. https://doi.org/10.1117/1.JBO.18.2.028001
CAS
PubMed
Article
Google Scholar