Advertisement

World Journal of Urology

, Volume 36, Issue 6, pp 877–882 | Cite as

Immunohistochemically detected IDH1R132H mutation is rare and mostly heterogeneous in prostate cancer

  • Andrea Hinsch
  • Meta Brolund
  • Claudia Hube-Magg
  • Martina Kluth
  • Ronald Simon
  • Christina Möller-Koop
  • Guido Sauter
  • Stefan Steurer
  • Andreas Luebke
  • Alexander Angerer
  • Corinna Wittmer
  • Emily Neubauer
  • Cosima Göbel
  • Franziska Büscheck
  • Sarah Minner
  • Waldemar Wilczak
  • Thorsten Schlomm
  • Frank Jacobsen
  • Till Sebastian Clauditz
  • Till Krech
  • Maria Christina Tsourlakis
  • Cornelia Schroeder
Original Article

Abstract

Background

IDH1 mutations are oncogenic through induction of DNA damage and genome instability. They are of therapeutic interest because they confer increased sensitivity to radiation and cytotoxic therapy and hold potential for vaccination therapy.

Methods

In this study, we analyzed more than 17,000 primary prostate cancer tissues with a mutation-specific antibody for the IDH1R132H mutation.

Results

IDH1 mutation-specific staining was found in 42 of 15,531 (0.3%) interpretable cancers. IDH1 mutation was associated with higher preoperative PSA and Gleason grade (p < 0.05, each) but was unrelated to PSA recurrence. A comparison with other molecular tumor features available from earlier studies revealed that TMPRSS2-ERG fusion as well as deletion of PTEN, 5q21, 6q15, and 3p13 was less frequent in IDH1-mutated than in non-mutated cancer. Increased lethality of genetically instable, “aberration-rich” cancer cells in the presence of IDH1 mutations could possibly explain this observation. Heterogeneity analysis revealed a homogeneous mutation in only 1 of 16 IDH1-mutated cancers. This high degree of heterogeneity may profoundly limit therapeutic targeting of IDH1 mutations in prostate cancer.

Conclusions

The data show that 0.3% of prostate cancers have an IDH1R132H mutation and that these are mostly heterogeneous. Once specific anti-IDH1 therapy becomes reality, only a very small group of prostate cancer patients may benefit from such a treatment.

Keywords

IDH1 ERG Deletion Prostate cancer TMA 

Notes

Author contributions

RS, GS, and TS developed the project; AH, MB, MK, CMK, SS, AL, AA, CW, EN, CG, FB, SM, WW, FJ, TSC, TK and MCT collected data; AH, CHM, MK, RS and CS did data analysis; AH, MK, RS, GS and CS wrote the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethics approval

The study was approved by the ethics committee Ärztekammer Hamburg (WF-049/09 and PV3652). The work has been carried out in compliance with the Helsinki Declaration.

Informed consent

According to local laws (HmbKHG, §12,1) informed consent was not necessary.

References

  1. 1.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Chowdhury R, Yeoh KK, Tian YM et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dang L, Yen K, Attar EC (2016) IDH mutations in cancer and progress toward development of targeted therapeutics. Ann Oncol 27:599–608CrossRefPubMedGoogle Scholar
  9. 9.
    Bleeker FE, Atai NA, Lamba S et al (2010) The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 119:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Glas M, Bahr O, Felsberg J et al (2011) NOA-05 phase 2 trial of procarbazine and lomustine therapy in gliomatosis cerebri. Ann Neurol 70:445–453CrossRefPubMedGoogle Scholar
  11. 11.
    Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343CrossRefPubMedGoogle Scholar
  12. 12.
    Rakheja D, Konoplev S, Medeiros LJ et al (2012) IDH mutations in acute myeloid leukemia. Hum Pathol 43:1541–1551CrossRefPubMedGoogle Scholar
  13. 13.
    Shibata T, Kokubu A, Miyamoto M et al (2011) Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol 178:1395–1402CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Murugan AK, Bojdani E, Xing M (2010) Identification and functional characterization of isocitrate dehydrogenase 1 (IDH1) mutations in thyroid cancer. Biochem Biophys Res Commun 393:555–559CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fathi AT, Sadrzadeh H, Comander AH et al (2014) Isocitrate dehydrogenase 1 (IDH1) mutation in breast adenocarcinoma is associated with elevated levels of serum and urine 2-hydroxyglutarate. Oncologist 19:602–607CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355CrossRefPubMedGoogle Scholar
  17. 17.
    Cancer Genome Atlas Research N (2015) The molecular taxonomy of primary prostate cancer. Cell 163:1011–1025CrossRefGoogle Scholar
  18. 18.
    Schlomm T, Iwers L, Kirstein P et al (2008) Clinical significance of p53 alterations in surgically treated prostate cancers. Mod Pathol 21:1371–1378CrossRefPubMedGoogle Scholar
  19. 19.
    Sauter G, Steurer S, Clauditz TS et al (2016) Clinical utility of quantitative gleason grading in prostate biopsies and prostatectomy specimens. Eur Urol 69:592–598CrossRefPubMedGoogle Scholar
  20. 20.
    Capper D, Zentgraf H, Balss J et al (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMedGoogle Scholar
  21. 21.
    Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bogdanovic E (2015) IDH1, lipid metabolism and cancer: shedding new light on old ideas. Biochim Biophys Acta 1850:1781–1785CrossRefPubMedGoogle Scholar
  23. 23.
    Dang L, White DW, Gross S et al (2010) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Mauzo SH, Lee M, Petros J et al (2014) Immunohistochemical demonstration of isocitrate dehydrogenase 1 (IDH1) mutation in a small subset of prostatic carcinomas. Appl Immunohistochem Mol Morphol 22:284–287CrossRefPubMedGoogle Scholar
  25. 25.
    Rohle D, Popovici-Muller J, Palaskas N et al (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340:626–630CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kernytsky A, Wang F, Hansen E et al (2015) IDH2 mutation-induced histone and DNA hypermethylation is progressively reversed by small-molecule inhibition. Blood 125:296–303CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327CrossRefPubMedGoogle Scholar
  28. 28.
    Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Houillier C, Wang X, Kaloshi G et al (2010) IDH1 or IDH2 mutations predict longer survival and response to temozolomide in low-grade gliomas. Neurology 75:1560–1566CrossRefPubMedGoogle Scholar
  30. 30.
    Mohrenz IV, Antonietti P, Pusch S et al (2013) Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis 18:1416–1425CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Hinsch
    • 1
  • Meta Brolund
    • 1
  • Claudia Hube-Magg
    • 1
  • Martina Kluth
    • 1
  • Ronald Simon
    • 1
  • Christina Möller-Koop
    • 1
  • Guido Sauter
    • 1
  • Stefan Steurer
    • 1
  • Andreas Luebke
    • 1
  • Alexander Angerer
    • 1
  • Corinna Wittmer
    • 1
  • Emily Neubauer
    • 1
  • Cosima Göbel
    • 1
  • Franziska Büscheck
    • 1
  • Sarah Minner
    • 1
  • Waldemar Wilczak
    • 1
  • Thorsten Schlomm
    • 3
    • 4
  • Frank Jacobsen
    • 1
  • Till Sebastian Clauditz
    • 1
  • Till Krech
    • 1
  • Maria Christina Tsourlakis
    • 1
  • Cornelia Schroeder
    • 1
    • 2
  1. 1.Institute of PathologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  2. 2.General, Visceral and Thoracic Surgery Department and ClinicUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Martini-Clinic, Prostate Cancer CenterUniversity Medical Center Hamburg-EppendorfHamburgGermany
  4. 4.Section for Translational Prostate Cancer Research, Department of UrologyUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations