Exogenous Application of 24-Epibrassinolide Improves Manganese Tolerance in Arabidopsis thaliana L. via the Modulation of Antioxidant System

Abstract

The goal of the present study was to investigate the role of 24-Epibrassinolide (EBL) hormone in supporting adaptation of plant to manganese (Mn) stress. For this purpose, changes in antioxidant system and stress-related gene expression were determined in rosette leaves of Arabidopsis thaliana following 24-h exposure to Mn (0.5 and 1.0 mM) and/or EBL (1 µM). Decreased chlorophyll level in the rosette leaves of seedlings due to Mn stress increased consequent to exogeneous EBL application. Superoxide dismutase (SOD) and catalase (CAT) enzyme activities alongside transcript level of copper/zinc superoxide dismutase 1 (CSD1), copper/zinc superoxide dismutase 2 (CSD2), copper/zinc superoxide dismutase 3 (CSD3), Fe superoxide dismutase 2 (FSD2), Fe superoxide dismutase 3 (FSD3), and catalase 2 (CAT2) genes were found to increase depending on Mn concentration; however, co-exposure of EBL and Mn led to a further improvement in enzyme activities and gene expressions (except CSD1 and CSD2 genes). The mRNA level of Fe superoxide dismutase 1 (FSD1) gene was downregulated following Mn and/or EBL treatments. Exogenous treatment of EBL improved the total antioxidant and proline level, while it decreased the lipid peroxidation under Mn stress. EBL treatment upregulated transcript level of delta 1-pyrroline-5-carboxylate synthase 1 (P5CS1) and delta 1-pyrroline-5-carboxylate synthase 2 (P5CS2) genes in seedlings treated with Mn. Co-treatment of Mn and EBL enhanced expression level of A. thaliana detoxification 1 (AtDTX1) and A. thaliana detoxification 3 (AtDTX3) genes when compared to the seedlings treated with Mn. Biochemical and molecular results from the current study revealed that EBL regulates antioxidant system in a coordinated manner under A. thaliana Mn stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L (2003) Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Mol Biol 51:363–372. https://doi.org/10.1023/A:1022043000516

    CAS  Article  PubMed  Google Scholar 

  2. Ahanger MA, Ashraf M, Bajguz A, Ahmad P (2018) Brassinosteroids regulate growth in plants under stressful environments and crosstalk with other potential phytohormones. J Plant Growth Regul 37:1007–1024. https://doi.org/10.1007/s00344-018-9855-2

    CAS  Article  Google Scholar 

  3. Arfan M, Zhang DW, Zou LJ, Luo SS, Tan WR, Zhu T, Lin HH (2019) Hydrogen peroxide and nitric oxide crosstalk mediates brassinosteroids induced cold stress tolerance in Medicago truncatula. Int J Mol Sci 20(1):144. https://doi.org/10.3390/ijms20010144

    CAS  Article  PubMed Central  Google Scholar 

  4. Arnon DI (1949) Copper enzymes in isolated choloroplast, polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Article  Google Scholar 

  5. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  6. Bhandari S, Nailwal TP (2020) Role of brassinosteroids in mitigating abiotic stresses in plants. Biologia 75:2203–2230. https://doi.org/10.2478/s11756-020-00587-8

    CAS  Article  Google Scholar 

  7. Bhardwaj R, Sharma P, Arora HK, Arora N (2008) 28-Homobrassinolide regulated Mn-uptake and growth of Brassica juncea L. Can J Pure Appl Sci 2(1):149–154

    Google Scholar 

  8. Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of seminatural ecosystems at Rothamsted Experimental Station, UK. Plant Soil 240:235–251. https://doi.org/10.1023/A:1015731530498

    CAS  Article  Google Scholar 

  9. Boojar MMA, Goodarzi F (2008) The copper tolerance strategies and the role of antioxidative enzymes in three plant species grown on copper mine. Chemosphere 67(11):2138–2147. https://doi.org/10.1016/j.chemosphere.2006.12.071

    CAS  Article  Google Scholar 

  10. Delhaize E, Gruber BD, Pittman JK, White RG, Leung H, Miao Y, Jiang L, Ryan PR, Richardson AE (2007) A role for the AtMTP11 gene of Arabidopsis in manganese transport and tolerance. Plant J 51(2):198–210. https://doi.org/10.1111/j.1365-313X.2007.03138.x

    CAS  Article  PubMed  Google Scholar 

  11. dos Santos LR, da Silva BRS, Pedron T, Batista BL, da Silva Lobato AK (2020) 24-Epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. J Soil Sci Plant Nutr 20(1):105–124. https://doi.org/10.1007/s42729-019-00105-z

    CAS  Article  Google Scholar 

  12. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136. https://doi.org/10.1016/j.nbt.2009.07.006

    CAS  Article  Google Scholar 

  13. Fabregas N, Lozano-Elena F, Blasco-Escámez D et al (2018) Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nat Commun 9:4680. https://doi.org/10.1038/s41467-018-06861-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Fariduddin Q, Ahmed M, Mir BA, Yusuf M, Khan TA (2015) 24-epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Environ Sci Pollut Res 22:11349–11359. https://doi.org/10.1007/s11356-015-4339-4

    CAS  Article  Google Scholar 

  15. Fernando DR, Mizuno T, Woodrow IE, Baker AJM, Collins RN (2010) Characterization of foliar manganese (Mn) in Mn (hyper) accumulators using X-ray absorption spectroscopy. New Phytol 188(4):1014–1027. https://doi.org/10.1111/j.1469-8137.2010.03431.x

    CAS  Article  PubMed  Google Scholar 

  16. Fu J, Sun P, Luo Y, Zhou H, Gao J, Zhao D, Pubu Z, Liu J, Hu T (2019) Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis. Environ Exp Bot 167:103831. https://doi.org/10.1016/j.envexpbot.2019.103831

    CAS  Article  Google Scholar 

  17. Fujiwara T, Hirai MY, Chino M, Komeda Y, Naito S (1992) Effects of sulfur nutrition on expression of the soybean seed storage protein genes in transgenic petunia. Plant Physiol 99:263–268

    CAS  Article  Google Scholar 

  18. Gao H, Zhang Z, Lv X, Cheng N, Peng B, Cao W (2016) Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Postharvest Biol Technol 111:390–397. https://doi.org/10.1016/j.postharvbio.2015.07.031

    CAS  Article  Google Scholar 

  19. Hauck M, Paul A, Gross S, Raubuch M (2003) Manganese toxicity in epiphytic lichens: chlorophyll degradation and interaction with iron and phosphorus. Environ Exp Bot 49(2):181–191. https://doi.org/10.1016/S0098-8472(02)00069-2

    CAS  Article  Google Scholar 

  20. Hussain A, Nazir F, Fariduddin Q (2019) 24-Epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physiol Mol Biol Plants 25:905–919. https://doi.org/10.1007/s12298-019-00672-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Imkampe J, Halter T, Huang S, Schulze S, Mazzotta S, Schmidt N, Manstretta R, Postel S, Wierzba M, Yang Y, vanDongen WM, Stahl M, Zipfel C, Goshe MB, Clouse S, de Vries SC, Tax F, Wang X, Kemmerling B (2017) The Arabidopsis leucine-rich repeat receptor kinase BIR3 negatively regulates BAK1 receptor complex formation and stabilizes BAK1. Plant Cell 29:2285–2303. https://doi.org/10.1105/tpc.17.00376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Jakubowska D, Janicka M (2017) The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress. Plant Sci 264:37–47. https://doi.org/10.1016/j.plantsci.2017.08.007

    CAS  Article  PubMed  Google Scholar 

  23. Jan S, Alyemeni MN, Wijaya L, Alam P, Siddique KH, Ahmad P (2018) Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol 18:146. https://doi.org/10.1186/s12870-018-1359-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Jia C, Zhao S, Bao T, Zhao P, Peng K, Guo Q, Gao X, Qin J (2021) Tomato BZR/BES transcription factor SIBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis. Plant Sci 302:110719. https://doi.org/10.1016/j.plantsci.2020.110719

    CAS  Article  PubMed  Google Scholar 

  25. Kasajima I, Fujiwara T (2007) Identification of novel Arabidopsis thaliana genes which are induced by high levels of boron. Plant Biotechnol 24:355–360. https://doi.org/10.5511/plantbiotechnology.24.355

    CAS  Article  Google Scholar 

  26. Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N (2020) Effects of 24-epibrassinolide on plant growth, antioxidants defense system, and endogenous hormones in two wheat varieties under drought stress. Physiol Plant (Special issue). https://doi.org/10.1111/ppl.13237

    Article  Google Scholar 

  27. Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Wijaya L, Alyemeni MN, Ahmad P (2018) Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environ Sci Pollut Res 25:15159. https://doi.org/10.1007/s11356-018-1742-7

    CAS  Article  Google Scholar 

  28. Li J, Jia Y, Dong R, Huang R, Liu P, Li X, Wang Z, Liu G, Chen Z (2019) Advances in the mechanisms of plant tolerance to manganese toxicity. Int J Mol Sci 20(20):5096. https://doi.org/10.3390/ijms20205096

    CAS  Article  PubMed Central  Google Scholar 

  29. Liu P, Huang R, Hu X, Jia Y, Li J, Luo J, Liu Q, Luo L, Liu G, Chen Z (2019) Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity. BMC Plant Biol 19:212. https://doi.org/10.1186/s12870-019-1822-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆Ct method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  31. Lu P, Magwanga RO, Kirungu JN, Hu Y, Dong Q, Cai X, Zhou Z, Wang X, Zhang Z, Hou Y, Wang K, Liu F (2019) Overexpression of cotton a DTX/MATE gene enhances drought, salt, and cold stress tolerance on transgenic Arabidopsis. Front Plant Sci 10(299):1–19. https://doi.org/10.3389/fpls.2019.00299

    Article  Google Scholar 

  32. Mackinney G (1941) Absorption of light by chlorophyll solution. J Biol Chem 140:315–322

    CAS  Article  Google Scholar 

  33. Madhava Rao KV, Sresty TV (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci 157(1):113–128. https://doi.org/10.1016/S0168-9452(00)00273-9

    CAS  Article  PubMed  Google Scholar 

  34. Marquez-Garcia B, Fernandez-Recamales MA, Cordoba F (2012) Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. J Bot. https://doi.org/10.1155/2012/936950

    Article  Google Scholar 

  35. Millaleo R, Reyes-Díaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481. https://doi.org/10.4067/S0718-95162010000200008

    Article  Google Scholar 

  36. Millaleo R, Reyes-Diaz M, Alberdi M, Ivanov AG, Krol M, Hüner NPA (2013) Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. J Exp Bot 64(1):343–354. https://doi.org/10.1093/jxb/ers339

    CAS  Article  PubMed  Google Scholar 

  37. Pan G, Liu W, Zhang H, Liu P (2018) Morphophysiological responses and tolerance mechanisms of Xanthium strumarium to manganese stress. Ecotoxicol Environ Saf 165:654–661. https://doi.org/10.1016/j.ecoenv.2018.08.107

    CAS  Article  PubMed  Google Scholar 

  38. Parashar A, Yusuf M, Fariduddin Q, Ahmad A (2014) Salicylic acid enhances antioxidant system in Brassica juncea grown under different levels of manganese. Int J Biol Macromol 70:551–558. https://doi.org/10.1016/j.ijbiomac.2014.07.014

    CAS  Article  PubMed  Google Scholar 

  39. Petrie SE, Jackson TL (1984) Effects of nitrogen fertilization on manganese concentration and yield of barley and oats. Soil Sci Soc Am J 48:319–322. https://doi.org/10.2136/sssaj1984.03615995004800020019x

    CAS  Article  Google Scholar 

  40. Pramanick P, Chakraborty A, Raychaudhuri SS (2017) Phenotypic and biochemical alterations in relation to MT2 gene expression in Plantago ovate Forsk under zinc stress. Biometals 30:171–184. https://doi.org/10.1007/s10534-017-9990-4

    CAS  Article  PubMed  Google Scholar 

  41. Rattan A, Kapoor D, Kapoor N, Bharwaj R, Sharma A (2020) Brassinosteroids regulate functional components of antioxidative defense system in salt stressed maize seedlings. J Plant Growth Regul 39:1–11. https://doi.org/10.1007/s00344-020-10097-1

    CAS  Article  Google Scholar 

  42. Ribeiro AT, Oliveira VP, Oliveira Barros Junior U, Silva BRS, Batista BL, Silva Lobato AK (2020) 24-Epibrassinolide mitigates nickel toxicity in young Eucalyptus urophylla S.T. Blake plants: nutritional, physiological, biochemical, anatomical and morphological responses. Ann For Sci 77:1–19. https://doi.org/10.1007/s13595-019-0909-9

    Article  Google Scholar 

  43. Ribera-Fonseca A, Inostroza-Blancheteau C, Cartes P, Rengel Z, Mora ML (2013) Early induction of Fe-SOD gene expression is involved in tolerance to Mn toxicity in perennial ryegrass. Plant Physiol Bioch 73:77–82. https://doi.org/10.1016/j.plaphy.2013.08.012

    CAS  Article  Google Scholar 

  44. Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14:1787–1799. https://doi.org/10.1105/tpc.001495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Santos EF, Santini JMK, Paixao AP, Furlani Júnior E, Lavres J, Campos M, Reis AR (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem 113:6–19. https://doi.org/10.1016/j.plaphy.2017.01.022

    CAS  Article  PubMed  Google Scholar 

  46. Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38(7):995–1014. https://doi.org/10.1590/S0100-879X2005000700003

    CAS  Article  PubMed  Google Scholar 

  47. Schlichting E, Sparrow LA (1988) Distribution and amelioration of manganese toxic soils. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Kluwer Academic Publishers, London, pp 277–292

    Google Scholar 

  48. Sharma P, Kumar A, Bhardwaj R (2016) Plant steroidal hormone epibrassinolide regulate- heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ Exp Bot 122:1–9. https://doi.org/10.1016/j.envexpbot.2015.08.005

    CAS  Article  Google Scholar 

  49. Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-Epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci 7:1569. https://doi.org/10.3389/fpls.2016.01569

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sheng H, Zeng J, Liu Y, Wang X, Wang Y, Kang H, Fan X, Sha L, Zhang H, Zhou Y (2016) Sulfur mediated alleviation of Mn toxicity in polish wheat relates to regulating Mn allocation and improving antioxidant system. Front Plant Sci 7:1382. https://doi.org/10.3389/fpls.2016.01382

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shi Q, Bao Z, Zhu Z, He Y, Qian Q, Yu J (2005) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66(13):1551–1559. https://doi.org/10.1016/j.phytochem.2005.05.006

    CAS  Article  PubMed  Google Scholar 

  52. Smeets K, Ruytinx J, Belleghem FV, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana. Plant Physiol Biochem 46(2):212–218. https://doi.org/10.1016/j.plaphy.2007.09.014

    CAS  Article  PubMed  Google Scholar 

  53. Soares T, Dias D, Oliveira AMS, Ribeiro DM, Dias L (2020) Exogenous brassinosteroids increase lead stress tolerance in seed germination and seedling growth of Brassica juncea L. Ecotoxicol Environ Saf 193:110296. https://doi.org/10.1016/j.ecoenv.2020.110296

    CAS  Article  PubMed  Google Scholar 

  54. Sousa B, Soares C, Oliveira F, Martins M, Branco-Neves S, Barbosa B, Ataíde I, Teixeira J, Azenha M, Azevedo RA, Fidalgo F (2020) Foliar application of 24-epibrassinolide improves Solanum nigrum L. tolerance to high levels of Zn without affecting its remediation potential. Chemosphere 244:125579. https://doi.org/10.1016/j.chemosphere.2019.125579

    CAS  Article  PubMed  Google Scholar 

  55. Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16. https://doi.org/10.1007/s10725-010-9526-1

    CAS  Article  Google Scholar 

  56. Surgun Y, Col B, Burun B (2016) 24-Epibrassinolide ameliorates the effects of boron toxicity on Arabidopsis thaliana (L.) Heynh by activating an antioxidant system and decreasing boron accumulation. Acta Physiol Plant 38:71. https://doi.org/10.1007/s11738-016-2088-8

    CAS  Article  Google Scholar 

  57. Surgun-Acar Y, Zemheri-Navruz F (2019) 24-Epibrassinolide promotes arsenic tolerance in Arabidopsis thaliana L. by altering stress responses at biochemical and molecular level. J Plant Physiol 238:12–19. https://doi.org/10.1016/j.jplph.2019.05.002

    CAS  Article  PubMed  Google Scholar 

  58. Talarek-Karwel M, Bajguz A, Piotrowska-Niczyporuk A (2020) 24-Epibrassinolide modulates primary metabolites, antioxidants, and phytochelatins in Acutodesmus obliquus exposed to lead stress. J Appl Phycol 32:263–276. https://doi.org/10.1007/s10811-019-01966-8

    CAS  Article  Google Scholar 

  59. Tanveer M, Shahzad B, Sharma A, Khan EA (2019) 24-Epibrassinolide application in plants: an implication for improving drought stress tolerance in plants. Plant Physiol Biochem 135:295–303. https://doi.org/10.1016/j.plaphy.2018.12.013

    CAS  Article  PubMed  Google Scholar 

  60. Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S (2019) The multitasking abilities of MATE transporters in plants. J Exp Bot 70:4643–4656. https://doi.org/10.1093/jxb/erz246

    CAS  Article  PubMed  Google Scholar 

  61. Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:67. https://doi.org/10.3389/fenvs.2014.00067

    Article  Google Scholar 

  62. Wang HH, Feng T, Peng XX, Yan ML, Zhou PL, Tang XK (2009) Ameliorative effects of brassinosteroid on excess manganese-induced oxidative stress in Zea mays. L leaves. Agric Sci China 8(9):1063–1074. https://doi.org/10.1016/S1671-2927(08)60314-4

    CAS  Article  Google Scholar 

  63. Wu F, Zhang G, Dominy P (2003) Four barley genotypes respond differently to cadmium: lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50(1):67–78. https://doi.org/10.1016/S0098-8472(02)00113-2

    CAS  Article  Google Scholar 

  64. Wu C, Li F, Xu H, Zeng W, Yu R, Wu X, Shen L, Liu Y, Li J (2019) The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physiol Biochem 141:51–59. https://doi.org/10.1016/j.plaphy.2019.05.011

    CAS  Article  PubMed  Google Scholar 

  65. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814. https://doi.org/10.1104/pp.109.138230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66(10):2839–2856. https://doi.org/10.1093/jxb/erv089

    CAS  Article  PubMed  Google Scholar 

  67. Ye K, Li H, Ding Y, Shi Y, Song CP, Gong Z, Yang S (2019) BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in Arabidopsis. Plant Cell 31:2682–2696. https://doi.org/10.1105/tpc.19.00058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang A, Zhang J, Ye N, Cao J, Tan M, Zhang J, Jiang M (2010) ZmMPK5 is required for the NADPH oxidase-mediated self-propagation of apoplastic H2O2 in brassinosteroid induced antioxidant defence in leaves of maize. J Exp Bot 61(15):4399–4411. https://doi.org/10.1093/jxb/erq243

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Zhao M, Yuan L, Wang J, Xie S, Zheng Y, Nie L, Zhu S, Hou J, Chen G, Wang C (2019) Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC Genomics 20:810. https://doi.org/10.1186/s12864-019-6191-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Zhong W, Xie C, Hu D, Pu S, Xiong X, Ma J, Sun L, Huang Z, Jiang M, Li X (2020) Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. Ecotoxicol Environ Saf 187:109831. https://doi.org/10.1016/j.ecoenv.2019.109831

    CAS  Article  PubMed  Google Scholar 

  71. Zhou YL, Huo SF, Wang LT, Meng JF, Zhang ZW, Xi ZM (2018) Exogenous 24-epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol Biochem 130:555–565. https://doi.org/10.1016/j.plaphy.2018.07.029

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

The authors thank the Bartin University Scientific Research Projects Unit for their support (Project number: 2020-FEN-B-002).

Author information

Affiliations

Authors

Contributions

YSA designed and performed experiment, analyzed the data, and wrote the paper, FZN performed experiment and analyzed the data.

Corresponding author

Correspondence to Yonca Surgun-Acar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Rhonda Peavy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Surgun-Acar, Y., Zemheri-Navruz, F. Exogenous Application of 24-Epibrassinolide Improves Manganese Tolerance in Arabidopsis thaliana L. via the Modulation of Antioxidant System. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10320-7

Download citation

Keywords

  • Antioxidant system
  • Gene expression
  • Manganese
  • MATE
  • Proline
  • 24-epibrassinolide