Functions of the E-class Floral Homeotic Genes in Several Common Dicotyledons

Abstract

The identity of the floral organs is defined by a small group of transcriptional regulators, and the activities of these proteins can specify the feature of the different whorls in flowers. In the last thirty years, formation of the floral organs remained as the main research subject in plant, especially in Arabidopsis thaliana. By using A. thaliana as material, relevant research works have established a basic architecture for the development of floral organs in higher plants, and it was named as the ABCDE model. In accordance with this model, the identity of the different floral organs can be confirmed by the specific combinations of A-, B-, C-, D-, or E-class floral homeotic genes. SEP-like genes encode MADS transcription factors required for the development of all the four whorls of floral organs and for the determinacy of the floral meristems. In ABCDE model, these genes are defined as E-class floral homeotic genes. A great deal of studies have shown that the proteins encoding by these genes are the main regulators of flower development and act pivotal parts not only in organ identification but also in organ morphogenesis. In this paper, the functions of the E-class floral homeotic genes in dicotyledons are reviewed, and the progress that has been made in characterization of the floral organ identity factors in A. thaliana and other dicotyledons is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD (2020) Fertilization in flowering plants: an odyssey of sperm cell delivery. Plant Mol Biol 103:9–32. https://doi.org/10.1007/s11103-020-00987-z

    CAS  Article  PubMed  Google Scholar 

  2. Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617. https://doi.org/10.1104/pp.005223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Angenent GC, Franken J, Busscher M, Weiss D, van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44. https://doi.org/10.1046/j.1365-313x.1994.5010033.x

    CAS  Article  PubMed  Google Scholar 

  4. Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJ, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7:1569–1582. https://doi.org/10.1105/tpc.7.10.1569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37(Web Server issue):W202–W208. https://doi.org/10.1093/nar/gkp335

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489. https://doi.org/10.1016/s1055-7903(03)00207-0

    CAS  Article  PubMed  Google Scholar 

  7. Becks L, Agrawal AF (2012) The evolution of sex is favoured during adaptation to new environments. PLoS Biol 10:e1001317. https://doi.org/10.1371/journal.pbio.1001317

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Callens C, Tucker MR, Zhang D, Wilson ZA (2018) Dissecting the role of MADS-box genes in monocot floral development and diversity. J Exp Bot 69:2435–2459. https://doi.org/10.1093/jxb/ery086

    CAS  Article  PubMed  Google Scholar 

  9. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37. https://doi.org/10.1038/353031a0

    CAS  Article  PubMed  Google Scholar 

  10. Colombo L, Franken J, Koetje E, van Went J, Dons HJ, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868. https://doi.org/10.1105/tpc.7.11.1859

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Colombo L, Franken J, Van der Krol AR, Wittich PE, Dons HJ, Angenent GC (1997) Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9:703–715. https://doi.org/10.1105/tpc.9.5.703

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Cseke LJ, Cseke SB, Ravinder N, Taylor LC, Shankar A, Sen B, Thakur R, Karnosky DF, Podila GK (2005) SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees. Gene 358:1–16. https://doi.org/10.1016/j.gene.2005.05.035

    CAS  Article  PubMed  Google Scholar 

  13. Cui R, Han J, Zhao S, Su K, Wu F, Du X, Xu Q, Chong K, Theissen G, Meng Z (2010) Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). Plant J 61:767–781. https://doi.org/10.1111/j.1365-313X.2009.04101.x

    CAS  Article  PubMed  Google Scholar 

  14. de Folter S, Immink RGH, Kieffer M, Parenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433. https://doi.org/10.1105/tpc.105.031831

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. de Martino G, Pan I, Emmanuel E, Levy A, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833–1845. https://doi.org/10.1105/tpc.106.042978

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940. https://doi.org/10.1016/j.cub.2004.10.028

    CAS  Article  PubMed  Google Scholar 

  17. Dreni L, Zhang D (2016) Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. J Exp Bot 67:1625–1638. https://doi.org/10.1093/jxb/erw046

    CAS  Article  PubMed  Google Scholar 

  18. Favaro R, Immink RGH, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater M, Colombo L (2002) Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics 268:152–159. https://doi.org/10.1007/s00438-002-0746-6

    CAS  Article  PubMed  Google Scholar 

  19. Ferrario S, Immink RGH, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7:84–91. https://doi.org/10.1016/j.pbi.2003.11.003

    Article  PubMed  Google Scholar 

  20. Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15:914–925. https://doi.org/10.1105/tpc.010280

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Flanagan CA, Ma H (1994) Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant Arabidopsis flowers. Plant Mol Biol 26:581–595. https://doi.org/10.1007/BF00013745

    CAS  Article  PubMed  Google Scholar 

  22. Galli V, Messias RDS, Perin EC, Borowski JM, Bamberg AL, Rombaldi CV (2016) Mild salt stress improves strawberry fruit quality. LWT Food Sci Technol 73:693–699. https://doi.org/10.1016/j.lwt.2016.07.001

    CAS  Article  Google Scholar 

  23. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180. https://doi.org/10.1105/tpc.019158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Gramzow L, Theißen G (2013) Phylogenomics of MADS-box genes in plants—two opposing life styles in one gene family. Biology 2:1150–1164. https://doi.org/10.3390/biology2031150

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Hayes TE, Sengupta P, Cochran BH (1988) The human c-fos serum response factor and the yeast factors GRM/PRTF have related DNA-binding specificities. Genes Dev 2:1713–1722. https://doi.org/10.1101/gad.2.12b.1713

    CAS  Article  PubMed  Google Scholar 

  26. Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529. https://doi.org/10.1038/35054083

    CAS  Article  PubMed  Google Scholar 

  27. Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C (2018) Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 46:4966–4977. https://doi.org/10.1093/nar/gky205

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Toki S (2017) Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat Plants 3:866–874. https://doi.org/10.1038/s41477-017-0041-5

    CAS  Article  PubMed  Google Scholar 

  29. Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Hirose S, Toki S (2020) Allelic mutations in the ripening-inhibitor locus generate extensive variation in tomato ripening. Plant Physiol 183:80–95. https://doi.org/10.1104/pp.20.00020

    CAS  Article  PubMed  Google Scholar 

  30. Jofuku KD, den Boer BG, Montagu MV, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225. https://doi.org/10.1105/tpc.6.9.1211

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Li N, Huang B, Tang N, Jian W, Zou J, Chen J, Cao HH, Habib S, Dong XK, Wei W, Gao YQ, Li ZG (2017) The MADS-box gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant Cell Physiol 58:2241–2256. https://doi.org/10.1093/pcp/pcx158

    CAS  Article  PubMed  Google Scholar 

  32. Li S, Zhu B, Pirrello J, Xu C, Zhang B, Bouzayen M, Chen K, Grierson D (2020) Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol 226:460–475. https://doi.org/10.1111/nph.16362

    CAS  Article  PubMed  Google Scholar 

  33. Lid SE, Meeley RB, Min Z, Nichols S, Olsen OA (2004) Knock-out mutants of two members of the AGL2 subfamily of MADS-box genes expressed during maize kernel development. Plant Sci 167:575–582. https://doi.org/10.1016/j.plantsci.2004.04.031

    CAS  Article  Google Scholar 

  34. Liu D, Wang D, Qin Z, Zhang D, Yin L, Wu L, Colasanti J, Li A, Mao L (2014) The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J 77:284–296. https://doi.org/10.1111/tpj.12387

    CAS  Article  PubMed  Google Scholar 

  35. Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495. https://doi.org/10.1101/gad.5.3.484

    CAS  Article  PubMed  Google Scholar 

  36. Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435. https://doi.org/10.1016/j.tplants.2005.07.008

    CAS  Article  PubMed  Google Scholar 

  37. Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913. https://doi.org/10.1038/35022611

    CAS  Article  PubMed  Google Scholar 

  38. Morita Y, Hoshino A (2018) Recent advances in flower color variation and patterning of Japanese morning glory and petunia. Breed Sci 68:128–138. https://doi.org/10.1270/jsbbs.17107

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, Maeda H, Kasumi T, Ito Y (2012) MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol 158:439–450. https://doi.org/10.1104/pp.111.183731

    CAS  Article  PubMed  Google Scholar 

  40. Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55:989–1003. https://doi.org/10.1016/0092-8674(88)90244-9

    CAS  Article  PubMed  Google Scholar 

  41. Passmore S, Maine GT, Elble R, Christ C, Tye BK (1988) Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J Mol Biol 204:593–606. https://doi.org/10.1016/0022-2836(88)90358-0

    CAS  Article  PubMed  Google Scholar 

  42. Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203. https://doi.org/10.1038/35012103

    CAS  Article  PubMed  Google Scholar 

  43. Pelaz S, Tapia-López R, Alvarez-Buylla ER, Yanofsky MF (2001a) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184. https://doi.org/10.1016/s0960-9822(01)00024-0

    CAS  Article  PubMed  Google Scholar 

  44. Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001b) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394. https://doi.org/10.1046/j.1365-313x.2001.2641042.x

    CAS  Article  PubMed  Google Scholar 

  45. Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173. https://doi.org/10.1105/tpc.6.2.163

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Qin GZ, Wang YY, Cao BH, Wang WH, Tian SP (2012) Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Plant J 70:243–255. https://doi.org/10.1111/j.1365-313X.2011.04861.x

    CAS  Article  PubMed  Google Scholar 

  47. Quinet M, Dubois C, Goffin MC, Chao J, Dielen V, Batoko H, Boutry M, Kinet JM (2006) Characterization of tomato (Solanum lycopersicum L.) mutants affected in their flowering time and in the morphogenesis of their reproductive structure. J Exp Bot 57:1381–1390. https://doi.org/10.1093/jxb/erj117

    CAS  Article  PubMed  Google Scholar 

  48. Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH (2010) Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biol 10:129. https://doi.org/10.1186/1471-2229-10-129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250:931–936. https://doi.org/10.1126/science.250.4983.931

    CAS  Article  PubMed  Google Scholar 

  50. Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K (2011) A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria × ananassa Duch.) fruit, a non-climacteric tissue. J Exp Bot 62:1179–1188. https://doi.org/10.1093/jxb/erq360

    CAS  Article  PubMed  Google Scholar 

  51. Smyth D (2000) A reverse trend—MADS functions revealed. Trends Plant Sci 5:315–317. https://doi.org/10.1016/s1360-1385(00)01690-3

    CAS  Article  PubMed  Google Scholar 

  52. Teo ZWN, Zhou W, Shen L (2019) Dissecting the function of MADS-box transcription factors in orchid reproductive development. Front Plant Sci 10:1474. https://doi.org/10.3389/fpls.2019.01474

    Article  PubMed  PubMed Central  Google Scholar 

  53. Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471. https://doi.org/10.1038/35054172

    CAS  Article  PubMed  Google Scholar 

  54. Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516. https://doi.org/10.1007/BF02337521

    CAS  Article  PubMed  Google Scholar 

  55. Theiβen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85. https://doi.org/10.1016/s1369-5266(00)00139-4

    Article  Google Scholar 

  56. Theiβen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143:3259–3271. https://doi.org/10.1242/dev.134080

    CAS  Article  Google Scholar 

  57. Vandenbussche M, Zethof J, Souer E, Koes R, Tornielli GB, Pezzotti M, Ferrario S, Angenent GC, Gerats T (2003) Toward the analysis of the petunia MADS box gene family by reverse and forward transposon insertion mutagenesis approaches: B, C, and D floral organ identity functions require SEPALLATA-like MADS box genes in petunia. Plant Cell 15:2680–2693. https://doi.org/10.1105/tpc.017376

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346. https://doi.org/10.1126/science.1068181

    CAS  Article  PubMed  Google Scholar 

  59. Wang Y, Wang W, Cai J, Zhang Y, Qin G, Tian S (2014) Tomato nuclear proteome reveals the involvement of specific E2 ubiquitin-conjugating enzymes in fruit ripening. Genome Biol 15:548. https://doi.org/10.1186/s13059-014-0548-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Wang X, Gao D, Sun J, Liu M, Lun Y, Zheng J, Wang S, Cui Q, Wang X, Huang S (2016) An exon skipping in a SEPALLATA-like gene is associated with perturbed floral and fruits development in cucumber. J Integr Plant Biol 58:766–771. https://doi.org/10.1111/jipb.12472

    CAS  Article  PubMed  Google Scholar 

  61. Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35–39. https://doi.org/10.1038/346035a0

    CAS  Article  PubMed  Google Scholar 

  62. Yu T, Tzeng DTW, Li R, Chen J, Zhong S, Fu D, Zhu B, Luo Y, Zhu H (2019) Genome-wide identification of long non-coding RNA targets of the tomato MADS box transcription factor RIN and function analysis. Ann Bot 123:469–482. https://doi.org/10.1093/aob/mcy178

    CAS  Article  PubMed  Google Scholar 

  63. Zahn LM, Kong H, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, Depamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223. https://doi.org/10.1534/genetics.104.037770

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G (2018) Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. Plant Sci 272:75–87. https://doi.org/10.1016/j.plantsci.2018.03.031

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30870194, J1210063), the Research Project of Provincial Key Laboratory of Shaanxi (15JS111), Graduate Research Project of Northwest University (YZZ15066), and the Opening Foundation of Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education.

Author information

Affiliations

Authors

Contributions

ZQX designed the outline of the article. ZQP and ZQX composed Figure and wrote the article.

Corresponding author

Correspondence to Zi-Qin Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Rhonda Peavy.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4232 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pu, ZQ., Xu, ZQ. Functions of the E-class Floral Homeotic Genes in Several Common Dicotyledons. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10318-1

Download citation

Keywords

  • ABCDE model
  • Floral organ
  • E-class floral homeotic genes
  • Dicotyledons