New Insights into the Transcriptional, Epigenetic, and Physiological Responses to Zinc Oxide Nanoparticles in Datura stramonium; Potential Species for Phytoremediation

Abstract

This study aimed to explore the physiological, epigenetic, and transcriptional responses of Datura stramonium, a stress-resistant plant, to long-time exposure to zinc oxide nanoparticles (nZnO; 0, 100, and 500 mg l−1). The results of the study illustrate that the nZnO100 promoted biomass accumulation and growth indices, whereas nZnO500 caused severe phytotoxicity. Unlike nZnO500 treatment which reduced leaf K (34.7%) and Fe (16.2%), implying impaired nutrition, the nZnO100-treated seedlings encompassed higher concentrations of K (20.8%) and Fe (21.7%) than the control. Moreover, the nZnO displayed a higher efficacy to improve Zn bioaccumulation than the bulk counterpart, and the supplements induced phenylalanine ammonia-lyase, catalase, and peroxidase activities. Besides, nZnO500 treatment enhanced leaf proline concentration. The nZnO treatments also led to variations in the expression of histone deacetylase (HDA3), indicating an epigenetic modification. The nZnO treatments transcriptionally stimulated the WRKY1 transcription factor by an average of 9.5-fold. With increasing the concentration of nZnO, transcriptions of AREB and bZIP transcription factors were induced by averages of 4.3- and 8.7-fold, respectively. The supplements transcriptionally upregulated proteinase inhibitor II (PI-II). While nZnO500 was associated with a drastic induction (11.28-fold) in hyoscyamine 6 beta-hydroxylase (H6H), the nZnO100 treatment slightly (3.2-fold) induced transcription of H6H. The upregulations in the expression of tropinone reductase I (TRI) resulted from the nZnO treatments. Ultimately, positive correlations were found among transcription factors (AREB, bZIP, and WRKY1), H6HTRI, and PI-II. This study provides deeper insights into the nZnO-associated molecular responses in transcription factors, epigenetics, secondary metabolism, and defense-related genes in resistant plant species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Babajani A, Iranbakhsh A, Ardebili ZO, Eslami B (2019) Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Pollut Res 26:24430. https://doi.org/10.1007/s11356-019-05676-z

    CAS  Article  Google Scholar 

  2. Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Article  Google Scholar 

  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Article  Google Scholar 

  4. Beaudoin-Eagan LD, Thorpe TA (1985) Tyrosine and phenylalanine ammonia lyase activities during shoot initiation in tobacco callus cultures. Plant Physiol 78:438–441

    CAS  Article  Google Scholar 

  5. Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137

    CAS  Article  Google Scholar 

  6. Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56:678–686

    CAS  Article  Google Scholar 

  7. Faizan M, Hayat S, Pichtel J (2020) Effects of zinc oxide nanoparticles on crop plants: a perspective analysis. Sustain Agric 41:83–99

    Google Scholar 

  8. Ghasempour M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019) Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study. 3 Biotech 9(11):404

    Article  Google Scholar 

  9. Ghosh M, Jana A, Sinha S, Jothiramajayam M, Nag A, Chakraborty A, Mukherjee A, Mukherjee A (2016) Effects of ZnO nanoparticles in plants: cytotoxicity, genotoxicity, deregulation of antioxidant defenses, and cell-cycle arrest. Mutat Res Genet Toxicol Environ Mutagen 807:25–32

    CAS  Article  Google Scholar 

  10. Hamza R, Pérez-Hedo M, Urbaneja A, Rambla JL, Granell A, Gaddour K, Beltrán JP, Cañas LA (2018) Expression of two barley proteinase inhibitors in tomato promotes endogenous defensive response and enhances resistance to Tuta absoluta. BMC Plant Biol 18:24

    Article  Google Scholar 

  11. Iranbakhsh A, Oshaghi M, Majd A (2006) Distribution of atropine and scopolamine in different organs and stages of development in Datura stramonium L. (Solanaceae). Structure and ultrastructure of biosynthesizing cells. Acta Biol Crac Bot 48(1):13–18

    Google Scholar 

  12. Iranbakhsh A, Ardebili ZO, Ardebili NO, Ghoranneviss M, Safari N (2018) Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiol Plant 40:154

    Article  Google Scholar 

  13. Iranbakhsh A, Ardebili ZO, Molaei H, Ardebili NO, Amini M (2020a) Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in Hemp (Cannabis sativa L.). Plasma Chem Plasma Process 40:527–537

    CAS  Article  Google Scholar 

  14. Iranbakhsh A, Oraghi Ardebili Z, Oraghi Ardebili N (2020b) Synthesis and characterization of zinc oxide nanoparticles and their impact on plants. In: Singh VP, Singh S, Prasad SM, Chauhan DK, Tripathi DK (eds) Chapter 3 in Plant responses to nanomaterials: recent interventions, and physiological and biochemical responses. Springer International Publishing

  15. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    CAS  Article  Google Scholar 

  16. Li S, Lin YCJ, Wang P, Zhang B, Li M, Chen S, Shi R, Tunlaya-Anukit S, Liu X, Wang Z, Dai X (2019) The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa. Plant Cell 31:663–686

    CAS  Article  Google Scholar 

  17. Moghanloo M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019a) Differential physiology and expression of phenylalanine ammonia lyase (PAL) and universal stress protein (USP) in the endangered species Astragalus fridae following seed priming with cold plasma and manipulation of culture medium with silica nanoparticles. 3 Biotech 9:288

    Article  Google Scholar 

  18. Moghanloo M, Iranbakhsh A, Ebadi M, Satari TN, Ardebili ZO (2019b) Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant 41:54

    Article  Google Scholar 

  19. Nair PMG, Chung IM (2017) Regulation of morphological, molecular and nutrient status in Arabidopsis thaliana seedlings in response to ZnO nanoparticles and Zn ion exposure. Sci Total Environ 575:187–198

    CAS  Article  Google Scholar 

  20. Nandhini M, Rajini SB, Udayashankar AC, Niranjana SR, Lund OS, Shetty HS, Prakash HS (2019) Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot 121:103–112

    CAS  Article  Google Scholar 

  21. Nazerieh H, Ardebili ZO, Iranbakhsh A (2018) Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agric Slov 111:357–368

    CAS  Article  Google Scholar 

  22. Pandey AS, Sharma E, Jain N, Singh B, Burman N, Khurana JP (2018) A rice bZIP transcription factor, OsbZIP6, regulates abiotic stress tolerance when over-expressed in Arabidopsis. J Plant Biochem Biotechnol 27:393–400

    CAS  Article  Google Scholar 

  23. Qiang W, Hou YL, Li X, Xia K, Liao ZH (2015) Cloning and expression of the key enzyme hyoscyamine 6 beta-hydroxylase gene (DaH6H) in scopolamine biosynthesis of Datura arborea. Acta Pharm Sin 50:1346–1355

    CAS  Google Scholar 

  24. Rajaee S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bitter melon (Momordica charantia); an invitro experiment. PLoS One 15(7):e0235556

    Article  Google Scholar 

  25. Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS (2018) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  26. Rehman S, Jorgensen B, Rasmussen SK, Aziz E, Akhtar W, Mahmood T (2018) Expression analysis of proteinase inhibitor-II under OsRGLP2 promoter in response to wounding and signaling molecules in transgenic Nicotiana benthamiana. 3 Biotech 8:51

    Article  Google Scholar 

  27. Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, ur Rehman MZ, Waris AA (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    CAS  Article  Google Scholar 

  28. Safari M, Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40:117

    Article  Google Scholar 

  29. Salama DM, Osman SA, El-Aziz MA, Elwahed MSA, Shaaban EA (2019) Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol 807:25–32

    Google Scholar 

  30. Savić J, Nikolić R, Banjac N, Zdravković-Korać S, Stupar S, Cingel A, Ćosić T, Raspor M, Smigocki A, Ninković S (2019) Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. J Plant Physiol 243:153055

    Article  Google Scholar 

  31. Seddighinia F, Iranbakhsh A, OraghiArdebili Z, NejadSatari T, Soleimanpour S (2020) Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in Bitter melon (Momordica charantia). J Plant Growth Regul 39:87–98. https://doi.org/10.1007/s00344-019-09965-2

    CAS  Article  Google Scholar 

  32. Sheteiwy MS, Yajing G, Dongdong C, Jie L, Aamir N, Qijuan H, Weimin H, Mingyu N, Jin H (2015) Seed priming with polyethylene glycol regulating the physiological and molecular mechanism in rice (Oryza sativa L.) under nano-ZnO stress. Sci Rep 5:14278

    Article  Google Scholar 

  33. Sheteiwy MS, Fu Y, Hu Q, Nawaz A, Guan Y, Li Z, Huang Y, Hu J (2016) Seed priming with polyethylene glycol induces antioxidative defense and metabolic regulation of rice under nano-ZnO stress. Environ Sci Pollut Res 23:19989–20002

    CAS  Article  Google Scholar 

  34. Sheteiwy MS, Dong Q, An J, Song W, Guan Y, He F, Huang Y, Hu J (2017) Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul 83:27–41

    CAS  Article  Google Scholar 

  35. Shirkhani Z, Rad AC, Gholami M, Mohsenzadeh F (2018) Phytoremediation of Cd-contaminated soils by Datura stramonium L. Toxicol Environ Health Sci 10(3):168–178

    Article  Google Scholar 

  36. Soni P, Siddiqui AA, Dwivedi J, Soni V (2012) Pharmacological properties of Datura stramonium L. as a potential medicinal tree: an overview. Asian Pac J Trop Biomed 2(12):1002–1008

    CAS  Article  Google Scholar 

  37. Sotoodehnia-Korani S, Iranbakhsh A, Ebadi M, Majd A, Ardebili ZO (2020) Selenium nanoparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ Pollut 5:114727. https://doi.org/10.1016/j.envpol.2020.114727

    CAS  Article  Google Scholar 

  38. Tanpure RS, Barbole RS, Dawkar VV, Waichal YA, Joshi RS, Giri AP, Gupta VS (2017) Improved tolerance against Helicoverpa armigera in transgenic tomato over-expressing multi-domain proteinase inhibitor gene from Capsicum annuum. Physiol Mol Biol Plants 23:597–604

    CAS  Article  Google Scholar 

  39. Tripathi DK, Mishra RK, Singh S, Singh S, Vishwakarma K, Sharma S, Singh VP, Singh PK, Prasad SM, Dubey NK, Pandey AC (2017) Nitric oxide ameliorates zinc oxide nanoparticles phytotoxicity in wheat seedlings: implication of the ascorbate–glutathione cycle. Front Plant Sci 8:1

    CAS  Article  Google Scholar 

  40. Venkatachalam P, Jayaraj M, Manikandan R, Geetha N, Rene ER, Sharma NC, Sahi SV (2017) Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: a physiochemical analysis. Plant Physiol Biochem 110:59–69

    CAS  Article  Google Scholar 

  41. Wang Z, Yan L, Wan L, Huai D, Kang Y, Shi L, Jiang H, Lei Y, Liao B (2019) Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut. BMC Genomics 20:1–14

    Article  Google Scholar 

  42. Zhang Y, Xu Z, Ji A, Luo H, Song J (2018) Genomic survey of bZIP transcription factor genes related to tanshinone biosynthesis in Salvia miltiorrhiza. Acta Pharm Sin B 8:295–305

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. N. Oraghi Ardebili, Dr. K. Khosraviani, and Dr. S. Beh-Afarin for their benevolent and professional collaborations in the research procedure and language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alireza Iranbakhsh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Durgesh Kumar Tripathi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vafaie Moghadam, A., Iranbakhsh, A., Saadatmand, S. et al. New Insights into the Transcriptional, Epigenetic, and Physiological Responses to Zinc Oxide Nanoparticles in Datura stramonium; Potential Species for Phytoremediation. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10305-6

Download citation

Keywords

  • Epigenetic
  • Metal oxide
  • Nanoparticles
  • Toxicity
  • Transcription factors
  • Zinc oxide