Nano-Boehmite Induced Oxidative and Nitrosative Stress Responses in Vigna radiata L.

Abstract

Wide spectrum and increasing use of nano-sized aluminum oxyhydroxide (boehmite, nBhm) particles have left a risk of their environmental exposure and possible toxic impacts. However, little is known about their toxicity. Current investigation was aimed to assess the toxic impacts of nBhm on Vigna radiata L., a model plant. Seedlings of V. radiata were exposed to 0 – 12 mM nBhm for ten days, and nBhm reduced the biomass production in a dose-dependent manner, with the greatest impacts under 12 mM nBhm causing 16% and 4% reduction in root and shoot dry weight (DW), respectively. Higher dose of nBhm damaged the cellular membrane stability and chlorophyll contents. The levels of major reactive oxygen species including superoxide radical, hydrogen peroxide and hydroxyl radical were increased by 2.65, 2.45 and 2.50 times more in leaves and 2.31, 2.55 and 5.71 times more in roots, respectively, in plants subjected to 12 mM nBhm treatment. Spectrophotometry and in-gel assays confirmed that the nBhm triggered antioxidative machinery with up-regulation of superoxide dismutase, catalase and peroxidase enzymes. Concurrent accumulation of non-enzymatic antioxidants was also recorded in the form of proline and ascorbic acid. The nBhm exposed plants showed higher nitric oxide production with 12 mM nBhm treatment causing 1.91- and 1.49-fold hike in nitric oxide content of leaves and roots, respectively. Interestingly, roots and leaves behaved contrastingly in terms of nitrate reductase activity in response to the nBhm treatment. The hierarchical clustering and principal component analysis revealed the closeness of the stress-indicating attributes towards higher nBhm concentrations. Collectively, nBhm exerted negative impacts on V. radiata in a dose-dependent manner, with higher toxicity at the concentration ≥ 8 mM, mediated through oxidative and nitrosative bursts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018) Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29:1065–1073. https://doi.org/10.1002/ldr.2780

    Article  Google Scholar 

  2. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  3. Anderson MD, Prasad TK, Stewart CR (1995) Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol 109:1247–1257. https://doi.org/10.1104/pp.109.4.1247

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Angadi SV, Entz MH (2002) Water relations of standard height and dwarf sunflower cultivars. Crop Sci 42:152–159. https://doi.org/10.2135/cropsci2002.1520

    Article  PubMed  Google Scholar 

  5. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris Plant Physiol 24:1–15. https://doi.org/10.1104/pp.24.1.1

    CAS  Article  PubMed  Google Scholar 

  6. Asztemborska M (2018) Alumina nanoparticles and plants: Environmental transformation, bioaccumulation, and phytotoxicity. In: Phytotoxicity of Nanoparticles. Springer, Cham, pp 335–345. doi:https://doi.org/10.1007/978-3-319-76708-6_14

  7. Bagherzadeh Homaee M, Ehsanpour AA (2016) Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic Environ Biotechnol 57:544–553. https://doi.org/10.1007/s13580-016-0083-z

    CAS  Article  Google Scholar 

  8. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    CAS  Article  Google Scholar 

  9. Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    CAS  Article  PubMed  Google Scholar 

  10. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    CAS  Article  Google Scholar 

  11. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS ONE. https://doi.org/10.1371/journal.pone.0034783

    Article  PubMed  PubMed Central  Google Scholar 

  12. Castillo FJ, Penel C, Greppin H (1984) Peroxidase release induced by ozone in Sedum album leaves. Involvement of Ca2+. Plant Physiol 74:846–851. https://doi.org/10.1104/pp.74.4.846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chahardoli A, Karimi N, Ma X, Qalekhani F (2020) Effects of engineered aluminum and nickel oxide nanoparticles on the growth and antioxidant defense systems of Nigella arvensis L. Sci Rep 10:3847. https://doi.org/10.1038/s41598-020-60841-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Chaitanya KSK, Naithani SC (1994) Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn.f. New Phytol 126:623–627. https://doi.org/10.1111/j.1469-8137.1994.tb02957.x

    CAS  Article  Google Scholar 

  15. Chung IM, Venkidasamy B, Thiruvengadam M (2019) Nickel oxide nanoparticles cause substantial physiological, phytochemical, and molecular-level changes in Chinese cabbage seedlings. Plant Physiol Biochem 139:92–101. https://doi.org/10.1016/j.plaphy.2019.03.010

    CAS  Article  PubMed  Google Scholar 

  16. Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  17. De A, Chakrabarti M, Ghosh I, Mukherjee A (2016) Evaluation of genotoxicity and oxidative stress of aluminium oxide nanoparticles and its bulk form in Allium cepa. Nucl 59:219–225. https://doi.org/10.1007/s13237-016-0179-y

    Article  Google Scholar 

  18. Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf Senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101. https://doi.org/10.1093/jxb/32.1.93

    CAS  Article  Google Scholar 

  19. Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD-implications and relevance for treatment. Int J Copd 9:1207–1224. https://doi.org/10.2147/COPD.S51226

    Article  Google Scholar 

  20. Dong L, Tang S, Deng F, Gong Y, Zhao K, Zhou J, Liang D, Fang J, Hecker M, Giesy JP, Bai X, Zhang H (2019) Shape-dependent toxicity of alumina nanoparticles in rat astrocytes. Sci Total Environ 690:158–166. https://doi.org/10.1016/j.scitotenv.2019.06.532

    CAS  Article  PubMed  Google Scholar 

  21. Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA (2016) When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci 7:471. https://doi.org/10.3389/fpls.2016.00471

    Article  PubMed  PubMed Central  Google Scholar 

  22. Forest V, Pailleux M, Pourchez J, Boudard D, Tomatis M, Fubini B, Sennour M, Hochepied JF, Grosseau P, Cottier M (2014) Toxicity of boehmite nanoparticles: impact of the ultrafine fraction and of the agglomerates size on cytotoxicity and pro-inflammatory response. Inhal Toxicol 26:545–553. https://doi.org/10.3109/08958378.2014.925993

    CAS  Article  PubMed  Google Scholar 

  23. Forlani G, Bertazzini M, Cagnano G (2019) Stress-driven increase in proline levels, and not proline levels themselves, correlates with the ability to withstand excess salt in a group of 17 Italian rice genotypes. Plant Biol 21:336–342. https://doi.org/10.1111/plb.12916

    CAS  Article  PubMed  Google Scholar 

  24. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    CAS  Article  PubMed  Google Scholar 

  25. Gunjan B, Zaidi M, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 02:1000133. https://doi.org/10.4172/2329-9029.1000133

    CAS  Article  Google Scholar 

  26. Halliwell B, Gutteridge JMC, Aruoma OI (1987) The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219. https://doi.org/10.1016/0003-2697(87)90222-3

    CAS  Article  PubMed  Google Scholar 

  27. Hasni I, Hamdani S, Carpentier R (2013) Destabilization of the oxygen evolving complex of photosystem II by Al3+. Photochem Photobiol 89:1135–1142. https://doi.org/10.1111/php.12116

    CAS  Article  PubMed  Google Scholar 

  28. Hassanpour P, Panahi Y, Ebrahimi-Kalan A, Akbarzadeh A, Davaran S, Nasibova AN, Khalilov R, Kavetskyy T (2018) Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett 13:1227–1231. https://doi.org/10.1049/mnl.2018.5070

    CAS  Article  Google Scholar 

  29. Hayes KL, Mui J, Song B, Sani ES, Eisenman SW, Sheffield JB, Kim B (2020) Effects, uptake, and translocation of aluminum oxide nanoparticles in lettuce: a comparison study to phytotoxic aluminum ions. Sci Total Environ 719:137393. https://doi.org/10.1016/j.scitotenv.2020.137393

    CAS  Article  PubMed  Google Scholar 

  30. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Hoagland D, Arnon D (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn 347:1–37

    Google Scholar 

  32. Hossain Z, Mustafa G, Komatsu S (2015) Plant responses to nanoparticle stress. Int J Mol Sci 16:26644–26653. https://doi.org/10.3390/ijms161125980

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Jin Y, Fan X, Li X, Zhang Z, Sun L, Fu Z, Lavoie M, Pan X, Qian H (2017) Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ Pollut 228:517–527. https://doi.org/10.1016/j.envpol.2017.04.073

    CAS  Article  PubMed  Google Scholar 

  34. Khare T, Kumar V, Kishor PBK (2015) Na+ and Cl- ions show additive effects under NaCl stress on induction of oxidative stress and the responsive antioxidative defense in rice. Protoplasma 252:1149–1165. https://doi.org/10.1007/s00709-014-0749-2

    CAS  Article  PubMed  Google Scholar 

  35. Kumar V, Shriram V, Hossain M, Kishor P (2015) Engineering proline metabolism for enhanced plant salt stress tolerance. In: Managing salt tolerance in plants. CRC Press, pp 353–372. doi:https://doi.org/10.1201/b19246-20

  36. Kumar V, Khare T, Sharma M, Wani SH (2017) ROS-Induced signaling and gene expression in crops under salinity stress. In: Reactive oxygen species and antioxidant systems in plants: Role and regulation under abiotic stress. Springer, Singapore, pp 159–184. doi:https://doi.org/10.1007/978-981-10-5254-5_7

  37. Kumar V, Sharma M, Khare T, Wani SH (2018) Impact of nanoparticles on oxidative stress and responsive antioxidative defense in plants. In: Nanomaterials in plants, algae, and microorganisms. Elsevier Inc., pp 393–406. doi:https://doi.org/10.1016/B978-0-12-811487-2.00017-7

  38. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621. https://doi.org/10.1016/j.jhazmat.2011.03.095

    CAS  Article  PubMed  Google Scholar 

  39. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787. https://doi.org/10.1104/pp.010497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lü P, Cao J, He S, Liu J, Li H, Cheng G, Ding Y, Joyce DC (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers Postharvest Biol Technol 57:196–202. https://doi.org/10.1016/j.postharvbio.2010.04.003

    CAS  Article  Google Scholar 

  41. Luo J, Sun S, Jia L, Chen W, Shen Q (2006) The mechanism of nitrate accumulation in pakchoi [Brassica campestris L.ssp. Chinensis(L.)]. Plant Soil 282:291–300. https://doi.org/10.1007/s11104-005-6094-7

    CAS  Article  Google Scholar 

  42. Ma C, Liu H, Guo H, Musante C, Coskun SH, Nelson BC, White JC, Xing B, Dhankher OP (2016) Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ Sci Nano 3:1369–1379. https://doi.org/10.1039/c6en00189k

    CAS  Article  Google Scholar 

  43. Malik CP, Singh MB (1980) Plant enzymology and histoenzymology. Kalyani Publishers, A text manual

    Google Scholar 

  44. Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:1–8. https://doi.org/10.3389/fpls.2017.00832

    Article  Google Scholar 

  45. Medina-Andrés R, Solano-Peralta A, Saucedo-Vázquez JP, Napsucialy-Mendivil S, Pimentel-Cabrera JA, Sosa-Torres ME, Dubrovsky JG, Lira-Ruan V (2015) The nitric oxide production in the moss Physcomitrella patens is mediated by nitrate reductase. PLoS ONE 10:e0119400. https://doi.org/10.1371/journal.pone.0119400

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Mosa KA, El-Naggar M, Ramamoorthy K, Alawadhi H, Elnaggar A, Wartanian S, Ibrahim E, Hani H (2018) Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:1–13. https://doi.org/10.3389/fpls.2018.00872

    Article  Google Scholar 

  47. Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58:166–170. https://doi.org/10.1111/j.1399-3054.1983.tb04162.x

    CAS  Article  Google Scholar 

  48. Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW (2019) Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot 161:120–133. https://doi.org/10.1016/j.envexpbot.2019.02.003

    CAS  Article  Google Scholar 

  49. Nair PMG, Chung IM (2014) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869. https://doi.org/10.1007/s11356-014-2822-y

    CAS  Article  Google Scholar 

  50. Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958. https://doi.org/10.1007/s11738-014-1667-9

    CAS  Article  Google Scholar 

  51. Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11. https://doi.org/10.1016/j.envexpbot.2013.03.002

    CAS  Article  Google Scholar 

  52. Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Susana Goggi A, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768. https://doi.org/10.1016/j.scitotenv.2016.11.149

    CAS  Article  PubMed  Google Scholar 

  53. Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956. https://doi.org/10.1016/S1001-0742(12)60301-5

    CAS  Article  Google Scholar 

  54. Rajeshwari A, Kavitha S, Alex SA, Kumar D, Mukherjee A, Chandrasekaran N, Mukherjee A (2015) Cytotoxicity of aluminum oxide nanoparticles on Allium cepa root tip—effects of oxidative stress generation and biouptake. Environ Sci Pollut Res 22:11057–11066. https://doi.org/10.1007/s11356-015-4355-4

    CAS  Article  Google Scholar 

  55. Rico CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants. In: Nanotechnology and Plant Sciences: Nanoparticles and Their Impact on Plants. Springer, Cham, pp 1–17. doi:https://doi.org/10.1007/978-3-319-14502-0_1

  56. Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x

    CAS  Article  Google Scholar 

  57. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnology 15:1–19. https://doi.org/10.1186/s12951-017-0268-3

    CAS  Article  Google Scholar 

  58. Ryan PR, Ditomaso JM, Kochian LV (1993) Aluminium toxicity in roots: An investigation of spatial sensitivity and the role of the root cap. J Exp Bot 44:437–446. https://doi.org/10.1093/jxb/44.2.437

    CAS  Article  Google Scholar 

  59. Saddhe AA, Malvankar MR, Karle SB, Kumar K (2019) Reactive nitrogen species: Paradigms of cellular signaling and regulation of salt stress in plants. Environ Exp Bot 161:86–97. https://doi.org/10.1016/j.envexpbot.2018.11.010

    CAS  Article  Google Scholar 

  60. Sahu RK, Hiremath SS (2017) Synthesis of Aluminium Nanoparticles in A Water/Polyethylene Glycol Mixed Solvent using μ-EDM. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/225/1/012257

    Article  Google Scholar 

  61. Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: Possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61. https://doi.org/10.1046/j.1439-037X.2000.00358.x

    CAS  Article  Google Scholar 

  62. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915. https://doi.org/10.1016/j.chemosphere.2013.05.044

    CAS  Article  PubMed  Google Scholar 

  63. Singh P, Singh I, Shah K (2019) Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: an in silico answer. Front Plant Sci 9:1–11. https://doi.org/10.3389/fpls.2018.01948

    Article  Google Scholar 

  64. Sumithra K, Jutur PP, Carmel BD, Reddy AR (2006) Salinity-induced changes in two cultivars of Vigna radiata: Responses of antioxidative and proline metabolism. Plant Growth Regul 50:11–22. https://doi.org/10.1007/s10725-006-9121-7

    CAS  Article  Google Scholar 

  65. Sun Y, Wang H, Li P, Duan X, Xu J, Han Y (2016) Synthesis and identification of hierarchical γ-AlOOH self-assembled by nanosheets with adjustable exposed facets. CrystEngComm 18:4546–4554. https://doi.org/10.1039/c6ce00581k

    CAS  Article  Google Scholar 

  66. Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

    CAS  Article  PubMed  Google Scholar 

  67. Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331. https://doi.org/10.1111/j.1469-8137.2007.02005.x

    CAS  Article  PubMed  Google Scholar 

  68. Tripathi A, Liu S, Singh PK, Kumar N, Pandey AC, Tripathi DK, Chauhan DK, Sahi S (2017) Differential phytotoxic responses of silver nitrate (AgNO3) and silver nanoparticle (AgNps) in Cucumis sativus L. Plant Gene 11:255–264. https://doi.org/10.1016/j.plgene.2017.07.005

    CAS  Article  Google Scholar 

  69. Turkan I (2018) ROS and RNS: key signalling molecules in plants. J Exp Bot 69:3313–3315. https://doi.org/10.1093/jxb/ery198

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Veljovic-Jovanovic S, Vidovic M, Morina F (2018) Ascorbate as a key player in plant abiotic stress response and tolerance. In: Ascorbic Acid in Plant Growth, Development and Stress Tolerance. Springer, Cham, pp 47–109. doi:https://doi.org/10.1007/978-3-319-74057-7_3

  71. Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: A perspective analysis. Sci Total Environ 630:1413–1435. https://doi.org/10.1016/j.scitotenv.2018.02.313

    CAS  Article  PubMed  Google Scholar 

  72. Wang W, Singh M (2011) Selection of Adjuvants for Enhanced Vaccine Potency. World J Vaccines 01:33–78. https://doi.org/10.4236/wjv.2011.12007

    CAS  Article  Google Scholar 

  73. Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305. https://doi.org/10.1016/0003-2697(71)90375-7

    CAS  Article  PubMed  Google Scholar 

  74. Wu P, Xiao C, Cui J, Hao B, Zhang W, Yang Z, Ahammed GJ, Liu H, Cui H (2020) Nitric oxide and its interaction with hydrogen peroxide enhance plant tolerance to low temperatures by improving the efficiency of the calvin cycle and the ascorbate–glutathione cycle in cucumber seedlings. J Plant Growth Regul. https://doi.org/10.1007/s00344-020-10242-w

    Article  Google Scholar 

  75. Xia B, Chen B, Sun X, Qu K, Ma F, Du M (2015) Interaction of TiO2 nanoparticles with the marine microalga Nitzschia closterium: Growth inhibition, oxidative stress and internalization. Sci Total Environ 508:525–533. https://doi.org/10.1016/j.scitotenv.2014.11.066

    CAS  Article  Google Scholar 

  76. Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296. https://doi.org/10.1007/s11270-015-2566-4

    CAS  Article  Google Scholar 

  77. Yanık F, Vardar F (2018) Oxidative stress response to aluminum oxide (Al2O3) nanoparticles in Triticum aestivum. Biol 73:129–135. https://doi.org/10.2478/s11756-018-0016-7

    CAS  Article  Google Scholar 

  78. Yanık F, Aytürk Ö, Vardar F (2017) Programmed cell death evidence in wheat (Triticum aestivum L.) roots induced by aluminum oxide (Al2O3) nanoparticles. Caryologia 70:112–119. https://doi.org/10.1080/00087114.2017.1286126

    Article  Google Scholar 

  79. Yuan X, Zhu J, Tang K, Cheng ZX, Yang W (2015) Formation and properties of 1-D alumina nanostructures prepared via a template-free thermal reaction. Proc Eng 102:602–609. https://doi.org/10.1016/j.proeng.2015.01.135

    CAS  Article  Google Scholar 

  80. Zhang Z, Ke M, Qu Q, Peijnenburg WJGM, Lu T, Zhang Q, Ye Y, Xu P, Du B, Sun L, Qian H (2018) Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response. Environ Pollut 239:689–697. https://doi.org/10.1016/j.envpol.2018.04.066

    CAS  Article  PubMed  Google Scholar 

  81. Zheng Y, Song J, Xu X, He M, Wang Q, Yan L (2014) Peptization mechanism of boehmite and its effect on the preparation of a fluid catalytic cracking catalyst. Ind Eng Chem Res 53:10029–10034. https://doi.org/10.1021/ie501060g

    CAS  Article  Google Scholar 

  82. Zhou B, Guo Z, Xing J, Huang B (2005) Nitric oxide is involved in abscisic acid-induced antioxidant activities in Stylosanthes guianensis. J Exp Bot 56:3223–3228. https://doi.org/10.1093/jxb/eri319

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the use of facilities created under DST-FIST and DBT Star College schemes implemented at Modern College, Ganeshkhind, Pune, India.

Author information

Affiliations

Authors

Contributions

VK and VS conceived the idea and supervised the work. TK, DD and AJ carried out the experiments. SG contributed to elemental analysis and characterization of nBhm, besides writing these results. All the authors contributed significantly in writing and revising the manuscript.

Corresponding author

Correspondence to Vinay Kumar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Durgesh Kumar Tripathi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1124 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khare, T., Dange, D., Jadhav, A. et al. Nano-Boehmite Induced Oxidative and Nitrosative Stress Responses in Vigna radiata L.. J Plant Growth Regul (2021). https://doi.org/10.1007/s00344-021-10303-8

Download citation

Keywords

  • Antioxidants
  • Cell death
  • Nitrosative stress
  • Oxidative stress
  • Reactive nitrogen species
  • Reactive oxygen species