Interactions Between Exogenous Cytokinin and Nitrogen Application Regulate Tiller Bud Growth via Sucrose and Nitrogen Allocation in Winter Wheat

Abstract

In this study, we assessed the effects of exogenous cytokinin and nitrogen levels on sucrose and nitrogen allocation and tiller bud growth. Results showed that low nitrogen (1.25 mmol L−1, LN) inhibited tiller bud growth and decreased tiller occurrence rate, compared with high nitrogen (7.5 mmol L−1, HN). SPAD readings and leaf photosynthesis rate was decreased by LN, which resulted in the decrease of sucrose content in the tiller bud. Furthermore, LN promoted the primary and lateral root growth, which may compete with the tiller bud for sucrose and nitrogen. Application of 6-BA (30 mg L−1) increased tiller bud length and the occurrence rate. Compared with LN, leaf photosynthesis and root activity was improved by application of 6-BA under LN condition (LN + 6-BA), which caused the increase of sucrose and nitrogen accumulation in tiller bud. Moreover, LN + 6-BA significantly increased endogenous zeatin (Zt) contents and decreased abscisic acid (ABA) levels in the tiller node. Correlation analysis indicated that tiller bud growth was positively correlated with sucrose and nitrogen accumulation. The latter two were positively correlated with endogenous Zt but negatively correlated with ABA and auxin (IAA):Zt, gibberellin (GA3):Zt, and ABA:Zt. Application of 6-BA with reduced nitrogen fertilizer (240 kg N ha−1, N1 + 6-BA) increased both grain yield and the partial factor productivity of applied N. Therefore, an appropriate combination of exogenous cytokinin with reduced N application could regulate tiller growth to enhance yield by endogenous hormones balance and sucrose and nitrogen allocation in the plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahmed S, Humphreys E, Salim M, Chauhan BS (2016) Growth, yield and nitrogen use efficiency of dry-seeded rice as influenced by nitrogen and seed rates in Bangladesh. Field Crops Res 186:18–31

    Google Scholar 

  2. Alqudah AM, Koppolu R, Wolde GM, Graner A, Schnurbusch T (2016) The genetic architecture of barley plant stature. Front Genet 7:117

    PubMed  PubMed Central  Google Scholar 

  3. Bai BZ, Jin JZ, Bai S, Huang LP (1994) Improvement of TTC method determining root activity in corn. Maize Sci 2:44–47

    Google Scholar 

  4. Barbier F, Péron T, Lecerf M, Perez-Garcia MD, Barrière Q, Rolčík J, Boutet-Mercey S, Citerne S, Lemoine R, Porcheron B, Roman H, Leduc N, Gourrierec JL, Bertheloot J, Sakr S (2015a) Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrid. J Exp Bot 66:2569–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Barbier FF, Lunn JE, Beveridge CA (2015b) Ready, steady, go! A sugar hit starts the race to shoot branching. Curr Opin Plant Biol 25:39–45

    CAS  PubMed  Google Scholar 

  6. Beveridge CA (2006) Axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    CAS  PubMed  Google Scholar 

  7. Cai T, Meng XP, Liu XL, Liu TN, Wang H, Jia ZK, Yang DQ, Ren XL (2018) Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones. Front Plant Sci 9:1886

    PubMed  PubMed Central  Google Scholar 

  8. Cassman KG, Gines GC, Dizon MA, Samson MI, Alcantara JM (1996) Nitrogen-use efficiency in tropical lowland rice systems: contributions from indigenous and applied nitrogen. Field Crops Res 47:1–12

    Google Scholar 

  9. Chabikwa TG, Brewer PB, Beveridge CA (2019) Initial bud outgrowth occurs independent of auxin flow out of buds. Plant Physiol 179:55–65

    CAS  PubMed  Google Scholar 

  10. Chen Y, Zhang Z, Tao F, Wang P, Wei X (2017) Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crops Res 206:11–20

    Google Scholar 

  11. Corot A, Roman H, Douillet O, Autret H, Perez-Garcia MD, Citerne S, Bertheloot J, Sakr S, Leduc N, Demotes-Mainard S (2017) Cytokinins and abscisic acid act antagonistically in the regulation of the bud outgrowth pattern by light intensity. Front Plant Sci 8:1724

    PubMed  PubMed Central  Google Scholar 

  12. Cui ZL, Chen XP, Zhang FS (2010) Current nitrogen management status and measures to improve the intensive wheat–maize system in China. Ambio 39:376–384

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Depudt S, Hardtke CS (2011) Hormone signaling crosstalk in plant growth regulation. Curr Biol 21:365–373

    Google Scholar 

  14. Dreccer MF, Chapman SC, Rattey AR, Neal J, Song Y, Christopher JJ, Reynolds M (2013) Developmental and growth controls of tillering and water-soluble carbohydrate accumulation in contrasting wheat (Triticum aestivum L.) genotypes: can we dissect them? J Exp Bot 64:143–160

    CAS  PubMed  Google Scholar 

  15. Evers JB (2015) Sugar as a key component of the shoot branching regulation network. Plant, Cell Environ 38:1455–1456

    Google Scholar 

  16. Evers JB, van der Krol AR, Vos J, Struik PC (2011) Understanding shoot branching by modelling form and function. Trends Plant Sci 16:464–467

    CAS  PubMed  Google Scholar 

  17. Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Höfgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J 92:611–623

    CAS  PubMed  Google Scholar 

  18. Finkelstein RR, Gibson S (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowed? Curr Opin Plant Biol 5:26–32

    CAS  PubMed  Google Scholar 

  19. Fletcher GM, Dale JE (1974) Growth of tiller buds in barley: effects of shade treatment and mineral nutrition. Ann Bot 38:63–76

    CAS  Google Scholar 

  20. Garnica M, Houdusse F, Zamarreno AM, Garcia-Mina JM (2010) The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. J Plant Physiol 167:1264–1272

    CAS  PubMed  Google Scholar 

  21. Gojon A (2017) Nitrogen nutrition in plants: rapid progress and new challenges. J Exp Bot 68:2457–2462

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gong X, Liu ML, Zhang LJ, Ruan YY, Ding R, Ji YQ, Zhang N, Zhang SB, Farmer J, Wang C (2015) Arabidopsis AtSUC2 and AtSUC4, encoding sucrose transporters, are required for abiotic stress tolerance in an ABA-dependent pathway. Physiol Plant 153:119–136

    CAS  PubMed  Google Scholar 

  23. González-Grandío E, Pajoro A, Franco-Zorrilla JM, Tarancón C, Immink RGH, Cubas P (2016) Abscisic acid signaling is controlled by a BRANCHED1/HA-ZIP/cascade in Arabidopsis axillary buds. PNAS 114:201613199

    Google Scholar 

  24. Hayat Q, Hayat S, Ali B, Ahmad A (2009) Auxin analogues and nitrogen metabolism, photosynthesis and yield of chickpea. J Plant Nutr 32:1469–1485

    CAS  Google Scholar 

  25. Javid MG, Sorooshzadeh A, Sanavy SAMM, Allahdadi I, Moradi F (2011) Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul 65:305–313

    Google Scholar 

  26. Jin XL, Yang GJ, Tan CW, Zhao CJ (2015) Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence, and sugar-nitrogen ratio in corn. Sci Rep 5:9311

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalaipandian S, Xue GP, Rae AL, Glassop D, Bonnett GD, Mclntyre LC (2019) Overexpression of TaCML20, a calmodulin-like gene, enhances water soluble carbohydrate accumulation and yield in wheat. Physiol Plant 165:790–799

    CAS  PubMed  Google Scholar 

  28. Kamada-Nobusada T, Makita N, Kojima M, Sakakibara H (2013) Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant Cell Physiol 54:1881–1893

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kebrom TH (2017) A growing stem inhibits bud outgrowth – The overlooked theory of apical dominance. Frontier in Plant Science 8:1874

    Google Scholar 

  30. Kebrom TH, Mullet JE (2015) Photosynthetic leaf area modulates tiller bud outgrowth in sorghum. Plant, Cell Environ 38:1471–1478

    CAS  Google Scholar 

  31. Kebrom TH, Chandler PM, Swain SM, King RW, Richards RA, Spielmeyer W (2012) Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development. Plant Physiol 160:308–318

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol 57:707–714

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kiba T, Kudo T, Kojima M, Sakakibara H (2011) Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. J Exp Bot 62:1399–1409

    CAS  PubMed  Google Scholar 

  34. Krouk G (2016) Hormones and nitrate: a two-way connection. Plant Mol Biol 91:599–606

    CAS  PubMed  Google Scholar 

  35. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010a) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:265–272

    Google Scholar 

  36. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010b) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927–937

    CAS  PubMed  Google Scholar 

  37. Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    CAS  PubMed  Google Scholar 

  38. Lawlor DW, Lemaire G, Gastal F (2001) Nitrogen, plant growth and crop yield. In: Lea PJ, Morot-Gaudry JF (eds) Plant nitrogen. Springer, Berlin, Heidelberg, pp 343–361

    Google Scholar 

  39. Liu Y, Ding YF, Wang QS, Meng DX, Wang SH (2011) Effects of nitrogen and 6-Benzelaminopurine on rice tiller bud growth and changes in endogenous hormones and nitrogen. Crop Sci 51:786–792

    CAS  Google Scholar 

  40. Liu ZL, Tao LY, Liu TT, Zhang XH, Wang W, Song JM, Yu CL, Peng XL (2019) Nitrogen application after low-temperature exposure alleviates tiller decrease in rice. Environ Exp Bot 158:205–214

    CAS  Google Scholar 

  41. Ljung K, Nemhauser JL, Perata P (2015) New mechanistic links between sugar and hormone signaling networks. Curr Opin Plant Biol 25:130–137

    CAS  PubMed  Google Scholar 

  42. Lloveras J, Manent J, Viudas J, López A, Santiveri P (2004) Seeding rate influence on yield and yield components of irrigated winter wheat in a Mediterranean climate. Agron J 96:1258–1265

    Google Scholar 

  43. Lu DJ, Lu FF, Pan JX, Cui ZL, Zou CQ, Chen XP, He MR, Wang ZL (2015a) The effects of cultivar and nitrogen management on wheat yield and nitrogen use efficiency in the North China Plain. Field Crops Res 171:157–164

    Google Scholar 

  44. Lu Y, Sasaki Y, Li XW, Mori IC, Matsuura TM, Hirayama TH, Sato T, Yamaguchi J (2015b) ABI1 regulates carbon/nitrogen-nutrient signal transduction independent of ABA biosynthesis and canonical ABA signaling pathways in Arabidopsis. J Exp Bot 66:2763–2771

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Martín-Fontecha ES, Tarancón C, Cubas P (2018) To grow or not to grow, a power-saving program induced in dormant buds. Curr Opin Plant Biol 41:102–109

    PubMed  Google Scholar 

  46. Marzec M, Alqudah AM (2018) Key hormonal components regulate agronomically important traits in barley. Int J Mol Sci 19:795

    PubMed Central  Google Scholar 

  47. Mason M, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. PNAS 111:6092–6097

    CAS  PubMed  Google Scholar 

  48. Meng QF, Yue SC, Hou P, Cui ZL, Chen XP (2016) Improving yield and nitrogen use efficiency simultaneously for maize and wheat in China: a review. Pedosphere 26:137–147

    Google Scholar 

  49. Moreno D, Berli FJ, Piccoli PN, Bottini R (2011) Gibberellins and abscisic acid promote carbon allocation in roots and berries of grapevines. J Plant Growth Regul 30:220–228

    CAS  Google Scholar 

  50. Mu XH, Chen QW, Wu XY, Chen FJ, Yuan LX, Mi GH (2018) Gibberrllins synthesis is involved in the reduction of cell flux and elemental growth rate in maize leaf under low nitrogen supply. Environ Exp Bot 150:198–208

    CAS  Google Scholar 

  51. Naruoka Y, Talbert LE, Lanning SP, Blake NK, Martin JM, Sherman JD (2011) Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet 123:1043–1053

    CAS  PubMed  Google Scholar 

  52. Plett DC, Holtham LR, Okamoto M, Garnett TP (2018) Nitrate uptake and its regulation in relation to improving nitrogen use efficiency in cereals. Semin Cell Dev Biol 74:97–104

    CAS  PubMed  Google Scholar 

  53. Qiao LY, Zhang L, Zhnag XJ, Zhang L, Li X, Chang JZ, Zhan HX, Guo HJ, Zheng J, Chang ZJ (2017) Evolution of the Aux/IAA gene family in hexaploid wheat. J Mol Evol 85:107–119

    CAS  PubMed  Google Scholar 

  54. Rameau C, Berthellot J, Leduc N, Andrieu B, Foucher F, Sakr S (2015) Multiple pathways regulate shoot branching. Front Plant Sci 5:741

    PubMed  PubMed Central  Google Scholar 

  55. Reddy SK, Holalu SV, Casal JJ, Finlayson SA (2013) Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light. Plant Physiol 163:1047–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Remans T, Nacry P, Pervent M, Girin T, Tillard P, Lepetit M, Gojon A (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiol 140:909–921

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448

    CAS  PubMed  Google Scholar 

  58. Sakr S, Wang M, Dédaldéchamp F, Perez-Garcia MD, Ogé L, Hamama L, Atanassova R (2018) The sugar-signaling hub: overview of regulators and interaction with the hormonal and metabolic network. Int J Mol Sci 19:2506

    PubMed Central  Google Scholar 

  59. Sugiura D, Sawakami K, Kojima M, Sakakibara H, Terashima I, Tateno M (2015) Roles of gibberellins and cytokinins in regulation of morphological and physiological traits in Polygonum cuspidatum responding to light and nitrogen availabilities. Funct Plant Biol 42:397–409

    CAS  PubMed  Google Scholar 

  60. Vreugdenhil D (1983) Abscisic acid inhibits phloem loading of sucrose. Physiol Plant 57:463–467

    CAS  Google Scholar 

  61. Waldie T, Leyser O (2018) Cytokinin targets auxin transport to promote shoot branching. Plant Physiol 177:803–818

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang J, Tian CH, Zhang C, Shi BH, Cao XW, Zhang TQ, Zhao Z, Wang JW, Jiao YL (2017) Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. Plant Cell 29:1373–1387

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Xin LJ, Li XB (2018) China should not massively reclaim new farmland. Land Use Policy 72:12–15

    Google Scholar 

  64. Yamaji N, Ma JF (2014) The node, a hub for mineral nutrient distribution in graminaceous plants. Trends Plant Sci 19:556–563

    CAS  PubMed  Google Scholar 

  65. Yang WY, Han HF, Ren WJ, Zhao L, Fan GQ (2005) Effects of uniconazole waterless-dressing seed on endogenous hormones and C/N ratio at tillering stage of wheat. Acta Agronom Sin 31:760–765

    CAS  Google Scholar 

  66. Yang DQ, Dong WH, Luo YL, Song WT, Cai T, Li Y, Yin YP, Wang ZL (2017) Effects of exogenous 6-BA on photosynthetic characteristics and endogenous hormone content in wheat leaves under two nitrogen application levels at seedling stages. Sci Agric Sin 50:3871–3884

    Google Scholar 

  67. Yang DQ, Cai T, Luo YL, Wang ZL (2019) Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat. PeerJ 7:e6484

    PubMed  PubMed Central  Google Scholar 

  68. Yeh SY, Chen HW, Ng CY, Lin CY, Tseng TH, Li WH, Ku MSB (2015) Down-regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice 8:36

    PubMed  PubMed Central  Google Scholar 

  69. Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    CAS  PubMed  Google Scholar 

  70. Zou Q (2000) Guidebook of plant physiology experiments. China Agriculture Press, Beijing, pp 110–112

    Google Scholar 

Download references

Acknowledgements

The research report here was supported by the National Natural Science Foundation of China (31801295), China Postdoctoral Science Special Foundation (2019T120600), China Postdoctoral Science Foundation funded Project (2018M632701), and the Shandong Province Natural Science Foundation (ZR2017BC106).

Author information

Affiliations

Authors

Contributions

DY and ZW conceived and designed the experiments. YL, XK, and CH performed the experiments. DY analysed the data and wrote the paper. The manuscript was reviewed and approved for publication by all authors.

Corresponding authors

Correspondence to Dongqing Yang or Zhenlin Wang.

Ethics declarations

Conflict of interest

The authors declare there are no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Luo, Y., Kong, X. et al. Interactions Between Exogenous Cytokinin and Nitrogen Application Regulate Tiller Bud Growth via Sucrose and Nitrogen Allocation in Winter Wheat. J Plant Growth Regul 40, 329–341 (2021). https://doi.org/10.1007/s00344-020-10106-3

Download citation

Keywords

  • Tiller bud
  • Hormone
  • Nitrogen
  • Sucrose
  • Allocation