Brassinosteroids in Plant Tolerance to Abiotic Stress

Abstract

Brassinosteroids (BRs) are a group of plant steroid hormones with multiple roles in plant growth, development, and responses to stresses. In plants, BR deficiencies impair vital physiological processes and cause phenotypic abnormalities. A large number of studies show that BRs can positively influence plant responses to abiotic stresses such as heat, cold, drought, salinity, pesticides, and heavy metals. However, the underlying mechanisms of BR-induced stress tolerance are largely unclear. BR perception takes place in the cell surface by BR receptors, leading to a cascade of phosphorylation events to activate the central transcription factor BRASSINAZOLE-RESISTANT1 (BZR1) that controls the transcription of BR-responsive genes in the nucleus. BRs improve photosynthetic efficiency under stress conditions, which largely contributes to increased growth and biomass accumulation. Studies relating to exogenous BRs reveal a high dependency on concentrations with regards to BR effects on plants. Genetic studies show a positive correlation between the endogenous BR levels and abiotic stress tolerance, although this assumption contradicts with the performance of some BR mutants under stress conditions. Notably, plant responses to BRs greatly vary depending on the plant species, developmental stages, and environmental conditions. In addition, other hormones and signaling molecules that participate in fine-tuning the BRs effects also play an important role in plant adaptation to stress. Here, we review the involvement of BRs in plant responses to abiotic stresses. We also discuss available literature to show potential mechanisms of BR-induced abiotic stress tolerance. These studies signify the complexity of BR action in mediating stress responses in plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Aghdam MS, Mohammadkhani N (2014) Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment. Food Bioprocess Technol 7(3):909–914. https://doi.org/10.1007/s11947-013-1165-x

    CAS  Article  Google Scholar 

  2. Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013) Role of brassinosteroids in alleviation of phenanthrene-cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 64(1):199–213. https://doi.org/10.1093/jxb/ers323

    CAS  Article  PubMed  Google Scholar 

  3. Ahammed G, Xia X, Li X, Shi K, Yu J, Zhou Y (2014) Role of brassinosteroid in plant adaptation to abiotic stresses and its interplay with other hormones. Curr Protein Pept Sci 16(5):462–473

    Article  Google Scholar 

  4. Ahammed GJ, Li X, Zhou J, Zhou Y-H, Yu J-Q (2016) Role of hormones in plant adaptation to heat stress. In: Ahammed G, Yu JQ (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht

    Google Scholar 

  5. Ahammed GJ, He BB, Qian XJ, Zhou YH, Shi K, Zhou J, Yu JQ, Xia XJ (2017) 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environ Pollut 229:922–931. https://doi.org/10.1016/j.envpol.2017.07.076

    CAS  Article  PubMed  Google Scholar 

  6. Ahammed GJ, Li X, Yang Y, Liu C, Zhou G, Wan H, Cheng Y (2020a) Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2019.103960

    Article  Google Scholar 

  7. Ahammed GJ, Wang Y, Mao Q, Wu M, Yan Y, Ren J, Wang X, Liu A, Chen S (2020b) Dopamine alleviates bisphenol A-induced phytotoxicity by enhancing antioxidant and detoxification potential in cucumber. Environ Pollut. https://doi.org/10.1016/j.envpol.2020.113957

    Article  PubMed  Google Scholar 

  8. Ahammed GJ, Wu M, Wang Y, Yan Y, Mao Q, Ren J, Ma R, Liu A, Chen S (2020c) Melatonin alleviates iron stress by improving iron homeostasis, antioxidant defense and secondary metabolism in cucumber. Sci Hortic 265:109205

    CAS  Article  Google Scholar 

  9. Ali B, Hayat S, Fariduddin Q, Ahmad A (2008) 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. Chemosphere 72(9):1387–1392. https://doi.org/10.1016/j.chemosphere.2008.04.012

    CAS  Article  PubMed  Google Scholar 

  10. Amraee L, Rahmani F, Abdollahi Mandoulakani B (2019) 24-Epibrassinolide alters DNA cytosine methylation of Linum usitatissimum L. under salinity stress. Plant Physiol Biochem 139:478–484. https://doi.org/10.1016/j.plaphy.2019.04.010

    CAS  Article  PubMed  Google Scholar 

  11. Bita C, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. https://doi.org/10.3389/fpls.2013.00273

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bucker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40(1 suppl 1):373–386. https://doi.org/10.1590/1678-4685-GMB-2016-0087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bukhari SA, Wang R, Wang W, Ahmed IM, Zheng W, Cao F (2016) Genotype-dependent effect of exogenous 24-epibrassinolide on chromium-induced changes in ultrastructure and physicochemical traits in tobacco seedlings. Environ Sci Pollut Res Int 23(18):18229–18238. https://doi.org/10.1007/s11356-016-7017-2

    CAS  Article  PubMed  Google Scholar 

  14. Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic 160:222–229. https://doi.org/10.1016/j.scienta.2013.05.039

    CAS  Article  Google Scholar 

  15. Chen C, Zhang H, Wang A, Lu M, Shen Z, Lian C (2015) Phenotypic plasticity accounts for most of the variation in leaf manganese concentrations in Phytolacca americana growing in manganese-contaminated environments. Plant Soil 396(1–2):215–227. https://doi.org/10.1007/s11104-015-2581-7

    CAS  Article  Google Scholar 

  16. Chen Z-Y, Wang Y-T, Pan X-B, Xi Z-M (2019) Amelioration of cold-induced oxidative stress by exogenous 24-epibrassinolide treatment in grapevine seedlings: toward regulating the ascorbate–glutathione cycle. Sci Hortic 244:379–387. https://doi.org/10.1016/j.scienta.2018.09.062

    CAS  Article  Google Scholar 

  17. Choe S (2010) Brassinosteroid biosynthesis and metabolism. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!. Springer, Dordrecht, pp 156–178

    Google Scholar 

  18. Choudhary SP, Yu J-Q, Yamaguchi-Shinozaki K, Shinozaki K, Tran L-SP (2012) Benefits of brassinosteroid crosstalk. Trends Plant Sci 17(10):594–605. https://doi.org/10.1016/j.tplants.2012.05.012

    CAS  Article  PubMed  Google Scholar 

  19. Clouse SD (2015) A history of brassinosteroid research from 1970 through 2005: thirty-five years of phytochemistry, physiology, genes, and mutants. J Plant Growth Regul 34(4):828–844. https://doi.org/10.1007/s00344-015-9540-7

    CAS  Article  Google Scholar 

  20. Cui J-X, Zhou Y-H, Ding J-G, Xia X-J, Shi K, Chen S-C, Asami T, Chen Z, Yu J-Q (2011) Role of nitric oxide in hydrogen peroxide-dependent induction of abiotic stress tolerance by brassinosteroids in cucumber. Plant Cell Environ 34(2):347–358. https://doi.org/10.1111/j.1365-3040.2010.02248.x

    CAS  Article  PubMed  Google Scholar 

  21. Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 Is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24(1):233–244. https://doi.org/10.1105/tpc.111.093062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29(6):681–691. https://doi.org/10.1046/j.1365-313X.2002.01257.x

    CAS  Article  PubMed  Google Scholar 

  23. Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26(3–4):131–136. https://doi.org/10.1016/j.nbt.2009.07.006

    CAS  Article  Google Scholar 

  24. Eremina M, Unterholzner SJ, Rathnayake AI, Castellanos M, Khan M, Kugler KG, May ST, Mayer KFX, Rozhon W, Poppenberger B (2017) Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants (vol 113, pg E5982, 2016). Proc Natl Acad Sci USA 114(6):E1038–E1039

    Article  Google Scholar 

  25. Fang P, Yan M, Chi C, Wang M, Zhou YH, Zhou J, Shi K, Xia X, Foyer CH, Yu J (2019) Brassinosteroids act as a positive regulator of photoprotection in response to chilling stress. Plant Physiol. https://doi.org/10.1104/pp.19.00088

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31(5):889–897. https://doi.org/10.1007/s11738-009-0302-7

    CAS  Article  Google Scholar 

  27. Guo DL, Wang ZG, Li Q, Gu SC, Zhang GH, Yu YH (2019) Hydrogen peroxide treatment promotes early ripening of Kyoho grape. Aust J Grape Wine Res 25(3):357–362. https://doi.org/10.1111/ajgw.12399

    CAS  Article  Google Scholar 

  28. Hasan MK, Ahammed GJ, Sun SC, Li MQ, Yin HQ, Zhou J (2019) Melatonin inhibits cadmium translocation and enhances plant tolerance by regulating sulfur uptake and assimilation in Solanum lycopersicum L. J Agric Food Chem 67(38):10563–10576. https://doi.org/10.1021/acs.jafc.9b02404

    CAS  Article  PubMed  Google Scholar 

  29. Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84(10):1446–1451. https://doi.org/10.1016/j.chemosphere.2011.04.047

    CAS  Article  PubMed  Google Scholar 

  30. Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151(1):60–66. https://doi.org/10.1016/j.envpol.2007.03.006

    CAS  Article  PubMed  Google Scholar 

  31. Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69(2):105–112. https://doi.org/10.1016/j.envexpbot.2010.03.004

    CAS  Article  Google Scholar 

  32. Hayat S, Alyemeni MN, Hasan SA (2012a) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19(3):325–335. https://doi.org/10.1016/j.sjbs.2012.03.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hayat S, Maheshwari P, Wani AS, Irfan M, Alyemeni MN, Ahmad A (2012b) Comparative effect of 28 homobrassinolide and salicylic acid in the amelioration of NaCl stress in Brassica juncea L. Plant Physiol Biochem 53:61–68. https://doi.org/10.1016/j.plaphy.2012.01.011

    CAS  Article  PubMed  Google Scholar 

  34. Hou J, Zhang Q, Zhou Y, Ahammed GJ, Zhou Y, Yu J, Fang H, Xia X (2018) Glutaredoxin GRXS16 mediates brassinosteroid-induced apoplastic H2O2 production to promote pesticide metabolism in tomato. Environ Pollut 240:227–234. https://doi.org/10.1016/j.envpol.2018.04.120

    CAS  Article  PubMed  Google Scholar 

  35. Hou J, Sun Q, Li J, Ahammed GJ, Yu J, Fang H, Xia X (2019) Glutaredoxin S25 and its interacting TGACG motif-binding factor TGA2 mediate brassinosteroid-induced chlorothalonil metabolism in tomato plants. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113256

    Article  PubMed  Google Scholar 

  36. Hu W-h, Yan X-h, Xiao Y-a, Zeng J-j, Qi H-j, Ogweno JO (2013) 24-Epibrassinosteroid alleviate drought-induced inhibition of photosynthesis in Capsicum annuum. Sci Hortic 150:232–237. https://doi.org/10.1016/j.scienta.2012.11.012

    CAS  Article  Google Scholar 

  37. Hussain M, Khan TA, Yusuf M, Fariduddin Q (2019) Silicon-mediated role of 24-epibrassinolide in wheat under high-temperature stress. Environ Sci Pollut Res 26(17):17163–17172. https://doi.org/10.1007/s11356-019-04938-0

    CAS  Article  Google Scholar 

  38. Jiang Y-P, Cheng F, Zhou Y-H, Xia X-J, Mao W-H, Shi K, Chen Z, Yu J-Q (2012) Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus. New Phytol 194(4):932–943. https://doi.org/10.1111/j.1469-8137.2012.04111.x

    CAS  Article  PubMed  Google Scholar 

  39. Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plantarum 148(1):133–145. https://doi.org/10.1111/j.1399-3054.2012.01696.x

    CAS  Article  Google Scholar 

  40. Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225(2):353–364. https://doi.org/10.1007/s00425-006-0361-6

    CAS  Article  PubMed  Google Scholar 

  41. Kanwar MK, Bhardwaj R, Arora P, Chowdhary SP, Sharma P, Kumar S (2012) Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86(1):41–49. https://doi.org/10.1016/j.chemosphere.2011.08.048

    CAS  Article  PubMed  Google Scholar 

  42. Karl-Josef D (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21(9):1356–1372. https://doi.org/10.1089/ars.2013.5672

    CAS  Article  Google Scholar 

  43. Khripach V (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot 86(3):441–447. https://doi.org/10.1006/anbo.2000.1227

    CAS  Article  Google Scholar 

  44. Li B, Zhang C, Cao B, Qin G, Wang W, Tian S (2012a) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43(6):2469–2480. https://doi.org/10.1007/s00726-012-1327-6

    CAS  Article  PubMed  Google Scholar 

  45. Li YH, Liu YJ, Xu XL, Jin M, An LZ, Zhang H (2012b) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56(1):192–196. https://doi.org/10.1007/s10535-012-0041-2

    CAS  Article  Google Scholar 

  46. Li P, Yin F, Song L, Zheng X (2016a) Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid. Food Chem 202:125–132. https://doi.org/10.1016/j.foodchem.2016.01.142

    CAS  Article  PubMed  Google Scholar 

  47. Li MQ, Ahammedl GJ, Li CX, Bao X, Yu JQ, Huang CL, Yin HQ, Zhou J (2016b) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:13. https://doi.org/10.3389/fpls.2016.00615

    CAS  Article  Google Scholar 

  48. Li H, Ye K, Shi Y, Cheng J, Zhang X, Yang S (2017) BZR1 Positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in arabidopsis. Mol Plant 10(4):545–559. https://doi.org/10.1016/j.molp.2017.01.004

    CAS  Article  PubMed  Google Scholar 

  49. Liu S, Che Z, Chen G (2016) Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Prot 84:56–61. https://doi.org/10.1016/j.cropro.2016.02.012

    CAS  Article  Google Scholar 

  50. Martinez C, Espinosa-Ruiz A, de Lucas M, Bernardo-Garcia S, Franco-Zorrilla JM, Prat S (2018) PIF4-induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J. https://doi.org/10.15252/embj.201899552

    Article  PubMed  PubMed Central  Google Scholar 

  51. Martins S, Montiel-Jorda A, Cayrel A, Huguet S, Roux CP, Ljung K, Vert G (2017) Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat Commun 8(1):309. https://doi.org/10.1038/s41467-017-00355-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Nie S, Huang S, Wang S, Mao Y, Liu J, Ma R, Wang X (2019) Enhanced brassinosteroid signaling intensity via SlBRI1 overexpression negatively regulates drought resistance in a manner opposite of that via exogenous BR application in tomato. Plant Physiol Biochem 138:36–47. https://doi.org/10.1016/j.plaphy.2019.02.014

    CAS  Article  PubMed  Google Scholar 

  53. Nie WF, Wang MM, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2013) Silencing of tomato RBOH1 and MPK2 abolishes brassinosteroid-induced H(2)O(2) generation and stress tolerance. Plant Cell Environ 36(4):789–803. https://doi.org/10.1111/pce.12014

    CAS  Article  PubMed  Google Scholar 

  54. Nolan T, Vukasinovic N, Liu D, Russinova E, Yin Y (2019) Brassinosteroids: multi-dimensional regulators of plant growth, development, and stress responses. Plant Cell. https://doi.org/10.1105/tpc.19.00335

    Article  PubMed  PubMed Central  Google Scholar 

  55. Northey JGB, Liang S, Jamshed M, Deb S, Foo E, Reid JB, McCourt P, Samuel MA (2016) Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat Plants. https://doi.org/10.1038/nplants.2016.114

    Article  PubMed  Google Scholar 

  56. Oerke EC (2005) Crop losses to pests. J Agric Sci 144(1):31–43. https://doi.org/10.1017/s0021859605005708

    Article  Google Scholar 

  57. Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27(1):49–57. https://doi.org/10.1007/s00344-007-9030-7

    CAS  Article  Google Scholar 

  58. Peres A, Soares JS, Tavares RG, Righetto G, Zullo MAT, Mandava NB, Menossi M (2019) Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int J Mol Sci. https://doi.org/10.3390/ijms20020331

    Article  PubMed  PubMed Central  Google Scholar 

  59. Planas-Riverola A, Gupta A, Betegon-Putze I, Bosch N, Ibanes M, Cano-Delgado AI (2019) Brassinosteroid signaling in plant development and adaptation to stress. Development. https://doi.org/10.1242/dev.151894

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629. https://doi.org/10.3389/fpls.2016.00629

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sadura I, Janeczko A (2018) Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol Plant 62(4):601–616. https://doi.org/10.1007/s10535-018-0805-4

    CAS  Article  Google Scholar 

  62. Sadura I, Pociecha E, Dziurka M, Oklestkova J, Novak O, Gruszka D, Janeczko A (2019) Mutations in the HvDWARF, HvCPD and HvBRI1 genes-involved in brassinosteroid biosynthesis/signalling: altered photosynthetic efficiency, hormonal homeostasis and tolerance to high/low temperatures in barley. J Plant Growth Regul 38(3):1062–1081. https://doi.org/10.1007/s00344-019-09914-z

    CAS  Article  Google Scholar 

  63. Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22(4):276–288. https://doi.org/10.1007/s00344-003-0062-3

    CAS  Article  PubMed  Google Scholar 

  64. Sharma A, Bhardwaj R, Kumar V, Thukral AK (2016a) GC-MS studies reveal stimulated pesticide detoxification by brassinolide application in Brassica juncea L. plants. Environ Sci Pollut Res 23(14):14518–14525. https://doi.org/10.1007/s11356-016-6650-0

    CAS  Article  Google Scholar 

  65. Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2016b) Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil. Ecotoxicol Environ Saf 133:195–201. https://doi.org/10.1016/j.ecoenv.2016.07.008

    CAS  Article  PubMed  Google Scholar 

  66. Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016c) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01569

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sharma A, Thakur S, Kumar V, Kesavan AK, Thukral AK, Bhardwaj R (2017) 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biol 17(1):56. https://doi.org/10.1186/s12870-017-1003-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Sharma A, Yuan H, Kumar V, Ramakrishnan M, Kohli SK, Kaur R, Thukral AK, Bhardwaj R, Zheng B (2019) Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol Environ Saf 179:50–61. https://doi.org/10.1016/j.ecoenv.2019.03.120

    CAS  Article  PubMed  Google Scholar 

  69. Singh I, Kumar U, Singh SK, Gupta C, Singh M, Kushwaha SR (2012) Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol Mol Biol Plants 18(3):229–236. https://doi.org/10.1007/s12298-012-0122-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Singh S, Prasad SM (2017) Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: photosynthesis and nitrogen metabolism. Plant Growth Regul 82(1):161–173. https://doi.org/10.1007/s10725-017-0248-5

    CAS  Article  Google Scholar 

  71. Song Y, Cui J, Zhang H, Wang G, Zhao F-J, Shen Z (2012) Proteomic analysis of copper stress responses in the roots of two rice (Oryza sativa L.) varieties differing in Cu tolerance. Plant Soil 366(1–2):647–658. https://doi.org/10.1007/s11104-012-1458-2

    CAS  Article  Google Scholar 

  72. Sonjaroon W, Jutamanee K, Khamsuk O, Thussagunpanit J, Kaveeta L, Suksamrarn A (2018) Impact of brassinosteroid mimic on photosynthesis, carbohydrate content and rice seed set at reproductive stage under heat stress. Agric Nat Resour. https://doi.org/10.1016/j.anres.2018.09.001

    Article  Google Scholar 

  73. Tiwari B, Kharwar S, Tiwari DN (2019) Pesticides and rice agriculture. In: Mishra AK, Tiwari DN, Rai AN (eds) Cyanobacteria. Academic Press, London, pp 303–325

    Google Scholar 

  74. Tong H, Chu C (2018) Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2018.08.007

    Article  PubMed  Google Scholar 

  75. Wang B, Li Y, Zhang WH (2012a) Brassinosteroids are involved in response of cucumber (Cucumis sativus) to iron deficiency. Ann Bot 110(3):681–688. https://doi.org/10.1093/aob/mcs126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Wang Q, Ding T, Gao L, Pang J, Yang N (2012b) Effect of brassinolide on chilling injury of green bell pepper in storage. Sci Hortic 144:195–200. https://doi.org/10.1016/j.scienta.2012.07.018

    CAS  Article  Google Scholar 

  77. Wang Y, Cao JJ, Wang KX, Xia XJ, Shi K, Zhou YH, Yu JQ, Zhou J (2018) BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation tolerance in tomato. Plant Physiol. https://doi.org/10.1104/pp.18.01028

    Article  PubMed  PubMed Central  Google Scholar 

  78. Wang FH, Ahammed GJ, Li GY, Bai PT, Jiang Y, Wang SX, Chen SC (2019a) Ethylene is involved in red light-induced anthocyanin biosynthesis in cabbage (Brassica oleracea). Int J Agric Biol 21(5):955–963. https://doi.org/10.17957/ijab/15.0980

    CAS  Article  Google Scholar 

  79. Wang Y-T, Chen Z-Y, Jiang Y, Duan B-B, Xi Z-M (2019b) Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Sci Hortic. https://doi.org/10.1016/j.scienta.2019.108596

    Article  Google Scholar 

  80. Wang JC, Zhu HL, Zhang C, Wang HW, Yang ZJ, Liu ZP (2019c) Puerarin protects rat liver and kidney against cadmium-induced oxidative stress. Indian J Anim Sci 89(9):927–931

    CAS  Google Scholar 

  81. Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20(8):2130–2145. https://doi.org/10.1105/tpc.107.055087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36(2):251–261. https://doi.org/10.1007/s11738-013-1406-7

    CAS  Article  Google Scholar 

  83. Xi ZM, Wang ZZ, Fang YL, Hu ZY, Hu Y, Deng MM, Zhang ZW (2013) Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V-vinifera L.) under chilling stress. Plant Growth Regul 71(1):57–65. https://doi.org/10.1007/s10725-013-9809-4

    CAS  Article  Google Scholar 

  84. Xia XJ, Huang YY, Wang L, Huang LF, Yu YL, Zhou YH, Yu JQ (2006) Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pestic Biochem Physiol 86(1):42–48. https://doi.org/10.1016/j.pestbp.2006.01.005

    CAS  Article  Google Scholar 

  85. Xia X-J, Gao C-J, Song L-X, Zhou Y-H, Shi K, Yu J-Q (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ 37(9):2036–2050. https://doi.org/10.1111/pce.12275

    CAS  Article  PubMed  Google Scholar 

  86. Xia XJ, Fang PP, Guo X, Qian XJ, Zhou J, Shi K, Zhou YH, Yu JQ (2018) Brassinosteroid-mediated apoplastic H2O2-glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant Cell Environ 41(5):1052–1064. https://doi.org/10.1111/pce.13052

    CAS  Article  PubMed  Google Scholar 

  87. Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009a) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150(2):801–814. https://doi.org/10.1104/pp.109.138230

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Xia XJ, Zhang Y, Wu JX, Wang JT, Zhou YH, Shi K, Yu YL, Yu JQ (2009b) Brassinosteroids promote metabolism of pesticides in cucumber. J Agric Food Chem 57(18):8406–8413. https://doi.org/10.1021/jf901915a

    CAS  Article  PubMed  Google Scholar 

  89. Xia XJ, Zhou YH, Ding J, Shi K, Asami T, Chen Z, Yu JQ (2011) Induction of systemic stress tolerance by brassinosteroid in Cucumis sativus. New Phytol 191(3):706–720. https://doi.org/10.1111/j.1469-8137.2011.03745.x

    CAS  Article  PubMed  Google Scholar 

  90. Xiong L, Zhu J-K (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25(2):131–139. https://doi.org/10.1046/j.1365-3040.2002.00782.x

    CAS  Article  PubMed  Google Scholar 

  91. Xiong LM, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183. https://doi.org/10.1105/tpc.000596

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S (2019) BRASSINOSTEROID-INSENSITIVE2 negatively regulates the stability of transcription factor ICE1 in response to cold stress in arabidopsis. Plant Cell 31(11):2682–2696. https://doi.org/10.1105/tpc.19.00058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Yin Y-L, Zhou Y, Zhou Y-H, Shi K, Zhou J, Yu Y, Yu J-Q, Xia X-J (2016) Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. J Hazard Mater 316:221–231. https://doi.org/10.1016/j.jhazmat.2016.04.070

    CAS  Article  PubMed  Google Scholar 

  94. Yin W, Dong N, Niu M, Zhang X, Li L, Liu J, Liu B, Tong H (2019) Brassinosteroid-regulated plant growth and development and gene expression in soybean. Crop J 7(3):411–418. https://doi.org/10.1016/j.cj.2018.10.003

    Article  Google Scholar 

  95. Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55(399):1135–1143. https://doi.org/10.1093/jxb/erh124

    CAS  Article  PubMed  Google Scholar 

  96. Yuan G-F, Jia C-G, Li Z, Sun B, Zhang L-P, Liu N, Wang Q-M (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126(2):103–108. https://doi.org/10.1016/j.scienta.2010.06.014

    CAS  Article  Google Scholar 

  97. Yuan L, Yuan Y, Du J, Sun J, Guo S (2012) Effects of 24-epibrassinolide on nitrogen metabolism in cucumber seedlings under Ca(NO3)2 stress. Plant Physiol Biochem 61:29–35. https://doi.org/10.1016/j.plaphy.2012.09.004

    CAS  Article  PubMed  Google Scholar 

  98. Yue J, You Y, Zhang L, Fu Z, Wang J, Zhang J, Guy RD (2018) Exogenous 24-epibrassinolide alleviates effects of salt stress on chloroplasts and photosynthesis in Robinia pseudoacacia L. seedlings. J Plant Growth Regul 38(2):669–682. https://doi.org/10.1007/s00344-018-9881-0

    CAS  Article  Google Scholar 

  99. Zander M, Thurow C, Gatz C (2014) TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol 165(4):1671–1683. https://doi.org/10.1104/pp.114.243360

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51(3):341–349. https://doi.org/10.1007/s11099-013-0031-4

    CAS  Article  Google Scholar 

  101. Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y, Ahammed GJ (2019a) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy 9(11):733

    CAS  Article  Google Scholar 

  102. Zhang Z, Wu P, Zhang W, Yang Z, Liu H, Ahammed GJ, Cui J (2019b) Calcium is involved in exogenous NO-induced enhancement of photosynthesis in cucumber (Cucumis sativus L.) seedlings under low temperature. Sci Hortic. https://doi.org/10.1016/j.scienta.2019.108953

    Article  Google Scholar 

  103. Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation F. J Integr Plant Biol 54(10):746–759. https://doi.org/10.1111/j.1744-7909.2012.01168.x

    CAS  Article  PubMed  Google Scholar 

  104. Zhao Z, Jin R, Fang D, Wang H, Dong Y, Xu R, Jiang J (2018) Paddy cultivation significantly alters the forms and contents of Fe oxides in an Oxisol and increases phosphate mobility. Soil Tillage Res 184:176–180. https://doi.org/10.1016/j.still.2018.07.012

    Article  Google Scholar 

  105. Zhao M, Yuan L, Wang J, Xie S, Zheng Y, Nie L, Zhu S, Hou J, Chen G, Wang C (2019) Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC Genomics 20(1):810. https://doi.org/10.1186/s12864-019-6191-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou J, Wang J, Li X, Xia XJ, Zhou YH, Shi K, Chen Z, Yu JQ (2014) H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J Exp Bot 65(15):4371–4383. https://doi.org/10.1093/jxb/eru217

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Zhou Y, Xia X, Yu G, Wang J, Wu J, Wang M, Yang Y, Shi K, Yu Y, Chen Z, Gan J, Yu J (2015) Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Sci Rep 5:9018. https://doi.org/10.1038/srep09018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Zhou YL, Huo SF, Wang LT, Meng JF, Zhang ZW, Xi ZM (2018) Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol Biochem 130:555–565. https://doi.org/10.1016/j.plaphy.2018.07.029

    CAS  Article  PubMed  Google Scholar 

  109. Zhou Y, Guang Y, Li J, Wang F, Ahammed GJ, Yang Y (2019) The CYP74 gene family in watermelon: genome-wide identification and expression profiling under hormonal stress and root-knot nematode infection. Agronomy 9(12):872

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Research in the authors’ laboratories was funded by the National Natural Science Foundation of China (31950410555), the National Key Research and Development Program of China (2018YFD1000800), the National Key R&D Program of China (2017YFE0107500), and the Zhejiang Provincial Natural Science Foundation of China (LY19C160009).

Author information

Affiliations

Authors

Contributions

Conceived and designed the article: GJA and XL; wrote the draft manuscript: GJA and XL; and reviewed and edited the manuscript: GJA, XL, AL, and SC. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Golam Jalal Ahammed or Xin Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahammed, G.J., Li, X., Liu, A. et al. Brassinosteroids in Plant Tolerance to Abiotic Stress. J Plant Growth Regul 39, 1451–1464 (2020). https://doi.org/10.1007/s00344-020-10098-0

Download citation

Keywords

  • Brassinolide
  • Environmental stress
  • Photosynthesis
  • Reactive oxygen species
  • Stress responses