Genetics and Resistance Mechanism of the Cucumber (Cucumis sativus L.) Against Powdery Mildew

Abstract

Powdery mildew (PM) is one of the most severe foliar diseases in cucumbers (Cucumis sativus L.), but the inheritance of PM resistance remains unclear. The molecular mechanisms underlying PM resistance have been a bottle-neck in the advancement of cucumber cultivars. However, recent findings have provided valuable information on the molecular mechanisms of defense-related genes and signaling pathways. Moreover, several PM resistance genes have been cloned, and their functions have been verified in cucumbers. In this review, we will focus on the inheritance and molecular mechanisms of PM resistance in cucumbers and generalize the known PM resistance genes and signaling pathways. These novel discoveries have advanced the molecular understanding of PM resistance and provide a foundation for the further breeding of resistant cucumber varieties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Askary H, Benhamou N, Brodeur J (1997) Ultrastructural and cytochemical investigations of the antagonistic effect of Verticillium lecanii on cucumber powdery mildew. Phytopathology 87:359–368

    CAS  PubMed  Google Scholar 

  2. Barnes WC, Epps WM (1956) Powdery mildew resistance in South Carolina cucumbers. Plant Dis Rep 40:1093

    Google Scholar 

  3. Berg JA, Appiano M, Santillán Martínez M, Hermans FW, Vriezen WH, Visser RG, Bai Y, Schouten HJ (2015) A transposable element insertion in the susceptibility gene CsaMLO8 results in hypocotyl resistance to powdery mildew in cucumber. BMC Plant Biol 15:243

    PubMed  PubMed Central  Google Scholar 

  4. Berg JA, Appiano M, Bijsterbosch G, Visser RGF, Schouten HJ, Bai Y (2017) Functional characterization of cucumber (Cucumis sativus L.) Clade V MLO genes. BMC Plant Biol 17:80

    PubMed  PubMed Central  Google Scholar 

  5. Bettiol W, Silva HSA, Reis RC (2008) Effectiveness of whey against zucchini squash and cucumber powdery mildew. Sci Hortic 117:82–84

    Google Scholar 

  6. Block CC (2005) Powdery mildew resistance in the U.S. national plant germplasm system cucumber collection. HortScience 40:416–420

    Google Scholar 

  7. Boutrot F, Zipfel C (2017) Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu Rev Phytopathol 55:257–286

    CAS  PubMed  Google Scholar 

  8. Caldo RA, Nettleton D, Wise RP (2004) Interaction dependent gene expression in MLA-specified response to barley powdery mildew. Plant Cell 16:2514–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang S, Weng Y (2010) Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569

    PubMed  PubMed Central  Google Scholar 

  10. Choi GJ, Lee SW, Jang KS, Kim JS, Cho KY, Kim JC (2004) Effects of chrysophanol, parietin, and nepodin of Rumex crispus on barley and cucumber powdery mildews. Crop Prot 23:1215–1221

    CAS  Google Scholar 

  11. Choi GJ, Kim JC, Jang KS, Lee DH (2007) Antifungal activities of Bacillus thuringiensis isolates on barley and cucumber powdery mildews. J Microbiol Biotechnol 17:2071–2075

    PubMed  Google Scholar 

  12. Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 72:299–328

    CAS  PubMed  Google Scholar 

  13. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annu Rev Plant Biol 66:487–511

    CAS  Google Scholar 

  14. de Ruiter W, Hofstede R, de Vries J, van den Heuvel H (2008) Combining QTL for resistance to CYSDV and powdery mildew in a single cucumber line. In: Pitrat M (ed) Proceedings of IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. INRA, Avignon, pp. 181–188

  15. Fan H, Ren L, Meng X, Song T, Meng K, Yu Y (2014) Proteome-level investigation of Cucumis sativus-derived resistance to Sphaerotheca fuliginea. Acta Physiol Plant 36:1781–1791

    CAS  Google Scholar 

  16. Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S (2013) Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber(Cucumis sativus L.). Mol Breeding 32:267–277

    CAS  Google Scholar 

  17. Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A, Zeilinger-Reichert E, Levy M (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front Plant Sci 6:132

    PubMed  PubMed Central  Google Scholar 

  18. Gilbert MJ, Thornton CR, Wakley GE, Talbot NJ (2007) Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiol 145:593–600

    Google Scholar 

  19. Gjetting T, Carver TL, Skot L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant Microbe Interact 17:729–738

    CAS  PubMed  Google Scholar 

  20. Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    CAS  PubMed  Google Scholar 

  21. Guo SG, Zheng Y, Joung JG, Liu SQ, Zhang ZH, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11:384

    PubMed  PubMed Central  Google Scholar 

  22. He X, Li Y, Pandey S, Yandell BS, Pathak M, Weng Y (2013) QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 126:2149–2161

    CAS  PubMed  Google Scholar 

  23. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan WuZ, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    CAS  PubMed  Google Scholar 

  24. Hückelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    PubMed  Google Scholar 

  25. Ishii H, Miyamoto T, Ushio S, Kakishima M (2011) Lack of cross-resistance to a novel succinate dehydrogenase inhibitor, fluopyram, in highly boscalid-resistant isolates of Corynespora cassiicola and Podosphaera xanthii. Pest Manage Sci 67(4):474–482

    CAS  Google Scholar 

  26. Ishii H, Fujiwara M, Nishimura K (2018) Systemic resistance inducer acibenzolar-S-methyl (ASM) and its microencapsulated formulations: their long-lasting control efficacy against cucumber diseases and mitigation of phytotoxicity. Pest Manage Sci 75(3):801–808

    Google Scholar 

  27. Itoh H, Tanaka H, Ohta H, Takeshiba H (2001) Synthesis and fungicidal activities of silicon-containing derivatives of 2-aryl-3-(1H-1,2,4-triazol-1-yl)propanenitriles. Chem Pharm Bull 49:909–911

    CAS  Google Scholar 

  28. Ji S, Paul NC, Deng J, Kim YS, Yun B, Yu S (2013) Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology 41:234–242

    PubMed  PubMed Central  Google Scholar 

  29. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  Google Scholar 

  30. Kavková M, Curn V (2005) Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) as a potential mycoparasite on Sphaerotheca fuliginea (Ascomycotina: Erysiphales). Mycopathologia 159:53–63

    PubMed  Google Scholar 

  31. Kim YS, Kim HM, Chang C, Hwang IC, Oh H, Ahn JS, Kim KD, Hwang BK, Kim BS (2007) Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag Sci 63(12):1208–1214

    CAS  PubMed  Google Scholar 

  32. Kim YS, Song J, Lee IK, Yeo WH, Yun B (2013) Bacillus sp. BS061 suppresses powdery mildew and gray mold. Mycobiology 41:108–111

    PubMed  PubMed Central  Google Scholar 

  33. Kooistra E (1968) Powdery mildew resistance in cucumber. Euphytica 17:236–244

    Google Scholar 

  34. Kourelis J, van der Hoorn RAL (2018) Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30:285–299

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Gu Y, Li J, Xu M, Wei Q, Wang Y (2015) Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew. Front Microbiol 6:883

    PubMed  PubMed Central  Google Scholar 

  37. Li Y, Tian S, Yang X, Wang X, Guo Y, Ni H (2016) Transcriptomic analysis reveals distinct resistant response by physcion and chrysophanol against cucumber powdery mildew. PeerJ 4:e1991

    PubMed  PubMed Central  Google Scholar 

  38. Liu L, Yuan X, Cai R, Pan J, Huanle H, Yuan L, Yuan G, Zhu I (2008) Quantitative trait loci for resistance to powdery mildew in cucumber under seedling spray inoculation and leaf disc infection. J Phytopathol 156:691–697

    Google Scholar 

  39. Liu P, Miao H, Lu H, Cui J, Tian G, Wehner TC, Gu X, Zhang S (2017) Molecular mapping and candidate gene analysis for resistance to powdery mildew in Cucumis sativus stem. Genet Mol Res. https://doi.org/10.4238/gmr16039680

    Article  PubMed  Google Scholar 

  40. Liu C, Qin Z, Zhou X, Xin M, Wang C, Liu D, Li S (2018) Expression and functional analysis of the Propamocarb-related gene CsDIR16 in cucumbers. BMC Plant Biol 18:16

    PubMed  PubMed Central  Google Scholar 

  41. Luoni L, Bonza MC, De Michelis MI (2000) H(+)/Ca(2+) exchange driven by the plasma membrane Ca(2+)-ATPase of Arabidopsis thaliana reconstituted in proteoliposomes after calmodulin-affinity purification. FEBS Lett 482:225–230

    CAS  PubMed  Google Scholar 

  42. McCormick F (1995) Ras-related proteins in signal transduction and growth control. Mol Reprod Dev 42:500–506

    CAS  PubMed  Google Scholar 

  43. McGrath MT (2001) Fungicide resistance in cucurbit powdery mildew: experiences and challenges. Plant Dis 85:236–245

    PubMed  Google Scholar 

  44. Meng X, Song T, Fan H, Yu Y, Cui N, Zhao J, Meng K (2016) A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress. Acta Physiol Plant 38:260

    Google Scholar 

  45. Meng X, Chen Q, Fan H, Song T, Cui N, Zhao J, Jia S, Meng K (2017) Molecular characterization, expression analysis and heterologous expression of two translationally controlled tumor protein genes from Cucumis sativus. PLoS ONE 12:e0184872

    PubMed  PubMed Central  Google Scholar 

  46. Meng X, Yu Y, Zhao J, Cui N, Song T, Yang Y, Fan H (2018) The two translationally controlled tumor protein genes, CsTCTP1 and CsTCTP2, are negative modulators in the Cucumis sativus defense response to Sphaerotheca fuliginea. Front Plant Sci 9:544

    PubMed  PubMed Central  Google Scholar 

  47. Morishita M, Sugiyam K, Saito T, Sakata Y (2003) Powdery mildew resistance in cucumber. JARQ-Jpn Agric Res Q 37:7–14

    Google Scholar 

  48. Nie J, He H, Peng J, Yang X, Bie B, Zhao J, Wang Y, Si L, Pan J, Cai R (2015a) Identification and fine mapping of pm5.1: a recessive gene for powdery mildew resistance in cucumber (Cucumis sativus L.). Mol Breed 35:7

    Google Scholar 

  49. Nie J, Wang Y, He H, Guo C, Zhu W, Pan J, Li D, Lian H, Pan J, Cai R (2015b) Loss-of-function mutations in CsMLO1 confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Front Plant Sci 6:1155

    PubMed  PubMed Central  Google Scholar 

  50. Perez-Garcia A, Romero D, Fernandez-Ortuno D, Lopez-Ruiz F, De Vicente A, Tores JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Mol Plant Pathol 10:153–160

    PubMed  Google Scholar 

  51. Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants (Basel) 3:458–475

    Google Scholar 

  52. Sakata Y, Kubo N, Morishita M, Kitadani E, Sugiyama M, Hirai M (2006) QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theor Appl Gene 112:243–250

    CAS  Google Scholar 

  53. Schouten HJ, Krauskopf J, Visser RGF, Bai Y (2014) Identification of candidate genes required for susceptibility to powdery or downy mildew in cucumber. Euphytica 200:475–486

    CAS  Google Scholar 

  54. Shanmugasundaram S, Williams PH, Peterson CE (1971) Inheritance of resistance to powdery mildew in cucumber. Phytopathology 61:1218–1221

    Google Scholar 

  55. Shanmugasundaram S, Williams PH, Peterson CE (1972) A recessive cotyledon marker gene in cucumber with pleiotropic effects. HortScience 7:555–556

    Google Scholar 

  56. Smith PG (1948) Powdery mildew resistance in cucumber. Phytopathology 39:1027–1028

    Google Scholar 

  57. Suthaparan A, Stensvand A, Solhaug KA, Torre S, Telfer KH, Ruud AK, Mortensen LM, Gadoury DM, Seem RC, Gislerød HR (2014) Suppression of cucumber powdery mildew by supplemental UV-B radiation in greenhouses can be augmented or reduced by background radiation quality. Plant Dis 98:1349–1357

    CAS  PubMed  Google Scholar 

  58. Suthaparan A, Solhaug KA, Stensvand A, Gislerød HR (2017) Daily light integral and day light quality: potentials and pitfalls of nighttime UV treatments on cucumber powdery mildew. J Photochnol Photobiol B 175:141–148

    CAS  Google Scholar 

  59. Tanaka K, Fukuda M, Amaki Y, Sakaguchi T, Inai K, Ishihara A, Nakajima H (2017) Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest Manage Sci 73:2419–2428

    CAS  Google Scholar 

  60. Tichtinsky G, Vanoosthuyse V, Cock JM, Gaude T (2003) Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci 8:231–237

    CAS  PubMed  Google Scholar 

  61. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50

    CAS  PubMed  PubMed Central  Google Scholar 

  62. van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    PubMed  Google Scholar 

  63. Wang L, Pei Z, Tian Y, He C (2005) OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact 18:375–384

    CAS  PubMed  Google Scholar 

  64. Wang H, Jiang Y, Yu H, Xia X, Shi K, Zhou Y, Yu J (2010) Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. Eur J Plant Pathol 127:125–135

    CAS  Google Scholar 

  65. Wang X, Zhang D, Cui N, Yu Y, Yu G, Fan H (2018a) Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber. Sci Rep 8:7798

    PubMed  PubMed Central  Google Scholar 

  66. Wang Y, VandenLangenberg K, Wen C, Wehner TC, Weng Y (2018b) QTL mapping of downy and powdery mildew resistances in PI 197088 cucumber with genotyping-by-sequencing in RIL population. Theor Appl Genet 131:597–611

    CAS  PubMed  Google Scholar 

  67. Wang Y, Tan J, Wu Z, VandenLangenberg K, Wehner TC, Wen C, Zheng X, Owens K, Thornton A, Bang HH, Hoeft E, Kraan PAG, Suelmann J, Pan J, Weng Y (2019) STAYGREEN, STAY HEALTHY: a loss-of-susceptibility mutation in the STAYGREEN gene provides durable, broad-spectrum disease resistances for over 50 years of US cucumber production. New Phytol 221:415–430

    CAS  PubMed  Google Scholar 

  68. Wäspi U, Schweizer P, Dudler R (2001) Syringolin reprograms wheat to undergo hypersensitive cell death in a compatible interaction with powdery mildew. Plant Cell 13:153–161

    PubMed  PubMed Central  Google Scholar 

  69. Weng Y, Johnson S, Staub JE, Huang S (2010) An Extended intervarietal microsatellite linkage map of cucumber, Cucumis sativus L. Hortsci A Publ Am Soc Horticult Sci 45:882–886

    Google Scholar 

  70. Xu F, Xu S, Wiermer M, Zhang Y, Li X (2012) The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. Plant J 70:916–928

    CAS  PubMed  Google Scholar 

  71. Xu Q, Shi Y, Yu T, Xu X, Yan Y, Qi X, Chen X (2016a) Whole-genome resequencing of a cucumber chromosome segment substitution line and its recurrent parent to identify candidate genes governing powdery mildew resistance. PLoS ONE 11:e0164469

    PubMed  PubMed Central  Google Scholar 

  72. Xu X, Yu T, Yu T, Xu R, Shi Y, Lin X, Xu Q, Qi X, Weng Y, Chen X (2016b) Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes. Theor Appl Genet 129:507–516

    CAS  PubMed  Google Scholar 

  73. Xu Q, Xu X, Shi Y, Qi X, Chen X (2017) Elucidation of the molecular responses of a cucumber segment substitution line carrying pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genomics 18:21

    PubMed  PubMed Central  Google Scholar 

  74. Yang X, Yang L, Wang S, Yu D, Ni H (2007) Synergistic interaction of physcion and chrysophanol on plant powdery mildew. Pest Manage Sci 63:511–515

    CAS  Google Scholar 

  75. Yang X, Ma X, Yang L, Yu D, Qian Y, Ni H (2009) Efficacy of rheum officinale liquid formulation on cucumber powdery mildew. Crop Prot 28:1031–1035

    Google Scholar 

  76. Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, Weng Y (2013) A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 13:53

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Yoshioka Y, Sakata Y, Sugiyama M, Fukino N (2014) Identification of quantitative trait loci for downy mildew resistance in cucumber (Cucumis sativus L.). Euphytica 198:265–276

    CAS  Google Scholar 

  78. Yu G, Wang X, Chen Q, Cui N, Yu Y, Fan H (2019) Cucumber mildew resistance locus O interacts with calmodulin and regulates plant cell death associated with plant immunity. Int J Mol Sci 20:2995

    CAS  PubMed Central  Google Scholar 

  79. Zhang S, Liu M, Miao H, Zhang S, Yang Y, Xie B, Gu X (2011) QTL mapping of resistance genes to powdery mildew in cucumber (Cucumis sativus L.). Sci Agric Sinica 44:3584–3593

    Google Scholar 

  80. Zhang S, Liu M, Miao H, Zhang S, Yang Y, Xie B, Wehner TC, Gu X (2013a) Chromosomal mapping and QTL analysis of resistance to downy mildew in Cucumis sativus. Plant Dis 97:245–251

    CAS  PubMed  Google Scholar 

  81. Zhang X, Li B, Wang Y, Guo Q, Lu X, Li S, Ma P (2013b) Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl Microbiol Biot 97:9525–9534

    CAS  Google Scholar 

  82. Zhang P, Zhu Y, Wang L, Chen L, Zhou S (2015) Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 16:1058

    PubMed  PubMed Central  Google Scholar 

  83. Zhang D, Meng K, Hao Y, Fan H, Cui N, Wang S, Song T (2016) Comparative proteomic analysis of cucumber roots infected by Fusarium oxysporum f. sp. cucumerium Owen. Physiol Mol Plant Pathol 96:77–84

    CAS  Google Scholar 

  84. Zhang K, Wang X, Zhu W, Qin X, Xu J, Cheng C, Lou Q, Li J, Chen J (2018) Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theor Appl Genet 131:2229–2243

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (C150203) and the Shenyang Young and Middle-aged Science and Technology Innovation Talents Project (RC170439).

Author information

Affiliations

Authors

Contributions

QC wrote and designed the manuscript. CL revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chunmao Lv.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Yu, G., Wang, X. et al. Genetics and Resistance Mechanism of the Cucumber (Cucumis sativus L.) Against Powdery Mildew. J Plant Growth Regul 40, 147–153 (2021). https://doi.org/10.1007/s00344-020-10075-7

Download citation

Keywords

  • Cucumis sativus L.
  • Powdery mildew
  • Inheritance
  • Qtls (quantitative trait loci)
  • Resistance mechanism