Effect of Salinity Stress on Enzymes’ Activity, Ions Concentration, Oxidative Stress Parameters, Biochemical Traits, Content of Sulforaphane, and CYP79F1 Gene Expression Level in Lepidium draba Plant

Abstract

In the first step in this study, the effect of 50 mM NaCl was studied on germination percentage of five different Lepidium draba (L. draba) ecotypes, and Rafsanjan ecotype was selected as experimental material as it had the highest germination percentage. In the second step, some biochemical, physiological, and morphological traits along with content of sulforaphane (SFN) as well as the expression level of Cytochorome P450 79F1 (CYP79F1) were evaluated in 14-day-old L. draba sprouts that grew 9 days in the presence of various concentrations of NaCl including 0, 25, 50, 75, and 100 mM. According to the results of this study, germination percentage of Rafsanjan ecotype along with lengths of stem and root were declined with increasing concentrations of NaCl. Ascorbate peroxidase, guaiacol peroxidase, and superoxide dismutase enzymes activity increased up to 75 mM NaCl and then decreased. With increasing the doses of NaCl, concentrations of Na+ and Cl increased, whereas P, Ca2+, and K+ decreased. Also, accumulation of some oxidative stress parameters including electrolyte leakage, malondialdehyde, other aldehydes, and hydrogen peroxide increased with increasing NaCl concentrations in all samples. Furthermore, contents of total phenolic, total flavonoid, total anthocyanin, total free amino acids, and total soluble carbohydrate were induced with the induction of NaCl concentrations. In this study, SFN formation increased with increasing concentration of sodium chloride up to 75 mM and decreased at higher concentration. In the last step, a partial CYP79F1 mRNA and its protein sequence were identified and registered in GenBank and then changes in the CYP79F1 gene expression levels under 0, 25, 50, 75, and 100 mM NaCl were calculated. The gene expression levels of CYP79F1 also showed the same pattern as was seen for SFN formation under salinity stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5(4):369–374. https://doi.org/10.4161/psb.5.4.10873

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30(3):161–175. https://doi.org/10.3109/07388550903524243

    CAS  Article  PubMed  Google Scholar 

  3. Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517. https://doi.org/10.1134/S1021443710040084

    CAS  Article  Google Scholar 

  4. Ahmad P, Ozturk M, Sharma S, Gucel S (2014) Effect of sodium carbonate-induced salinity–alkalinity on some key osmoprotectants, protein profile, antioxidant enzymes, and lipid peroxidation in two mulberry (Morus alba L.) cultivars. J Plant Interact 9(1):460–467. https://doi.org/10.1080/17429145.2013.855271

    CAS  Article  Google Scholar 

  5. Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868. https://doi.org/10.3389/fpls.2015.00868

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmad P, Abdel Latef AA, Hashem A, Abd Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347–347. https://doi.org/10.3389/fpls.2016.00347

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ahmad P, Ahanger MA, Alyemeni MN, Wijaya L, Egamberdieva D, Bhardwaj R, Ashraf M (2017) Zinc application mitigates the adverse effects of NaCl stress on mustard [Brassica juncea (L.) Czern & Coss] through modulating compatible organic solutes, antioxidant enzymes, and flavonoid content. J Plant Interact 12(1):429–437. https://doi.org/10.1080/17429145.2017.1385867

    CAS  Article  Google Scholar 

  8. Ahmad P, Abass Ahanger M, Nasser Alyemeni M, Wijaya L, Alam P, Ashraf M (2018) Mitigation of sodium chloride toxicity in Solanum lycopersicum L. by supplementation of jasmonic acid and nitric oxide. J Plant Interact 13(1):64–72. https://doi.org/10.1080/17429145.2017.1420830

    CAS  Article  Google Scholar 

  9. Ahmad P, Ahanger MA, Alam P, Alyemeni MN, Wijaya L, Ali S, Ashraf M (2019) Silicon (Si) supplementation alleviates NaCl toxicity in Mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J Plant Growth Regul 38(1):70–82. https://doi.org/10.1007/s00344-018-9810-2

    CAS  Article  Google Scholar 

  10. Akbari M, Mahna N, Ramesh K, Bandehagh A, Mazzuca S (2018) Ion homeostasis, osmoregulation, and physiological changes in the roots and leaves of pistachio rootstocks in response to salinity. Protoplasma 255(5):1349–1362. https://doi.org/10.1007/s00709-018-1235-z

    CAS  Article  PubMed  Google Scholar 

  11. Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231(2):243–254. https://doi.org/10.1023/A:1010378409663

    CAS  Article  Google Scholar 

  12. Almodares A, Hadi M, Dosti B (2007) Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. J Biol Sci 7(8):1492–1495. https://doi.org/10.3923/jbs.2007.1492.1495

    Article  Google Scholar 

  13. Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7(1):73–81

    CAS  Article  Google Scholar 

  14. Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. In: Callow JA (ed) Advances in botanical research, vol 29. Academic Press, New York, pp 75–112. https://doi.org/10.1016/S0065-2296(08)60310-9

    Google Scholar 

  15. Asada K, Nakano Y (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  Google Scholar 

  16. Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27(1):84–93. https://doi.org/10.1016/j.biotechadv.2008.09.003

    CAS  Article  PubMed  Google Scholar 

  17. Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L). Environ Exp Bot 63(1):266–273. https://doi.org/10.1016/j.envexpbot.2007.11.008

    CAS  Article  Google Scholar 

  18. Bahrani A (2013) Effect of salinity on growth, ions distribution, accumulation and chlorophyll concentrations in two canola (Brassica napus L.) cultivars. Am-Eurasian J Agric Environ Sci 13(5):683–689. https://doi.org/10.5829/idosi.wasj.2013.27.08.642

    CAS  Article  Google Scholar 

  19. Bai X, Yang L, Yang Y, Ahmad P, Yang Y, Hu X (2011) Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize. J Proteome Res 10(10):4349–4364. https://doi.org/10.1021/pr200333f

    CAS  Article  PubMed  Google Scholar 

  20. Biddulph TB, Plummer JA, Setter TL, Mares DJ (2007) Influence of high temperature and terminal moisture stress on dormancy in wheat (Triticum aestivum L.). Field Crops Res 103(2):139–153. https://doi.org/10.1016/j.fcr.2007.05.005

    Article  Google Scholar 

  21. Borek V, Elberson LR, McCaffrey JP, Morra MJ (1998) Toxicity of isothiocyanates produced by glucosinolates in Brassicaceae species to black vine weevil eggs. J Agric Food Chem 46(12):5318–5323. https://doi.org/10.1021/jf9805754

    CAS  Article  Google Scholar 

  22. Bose J, Shabala S, Rodrigo-Moreno A (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65(5):1241–1257. https://doi.org/10.1093/jxb/ert430

    CAS  Article  PubMed  Google Scholar 

  23. Bouchabke O, Tardieu F, Simonneau T (2006) Leaf growth and turgor in growing cells of maize (Zea mays L.) respond to evaporative demand under moderate irrigation but not in water-saturated soil. Plant Cell Environ 29(6):1138–1148. https://doi.org/10.1111/j.1365-3040.2005.01494.x

    Article  PubMed  Google Scholar 

  24. Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52(1):98–111. https://doi.org/10.1111/j.1744-7909.2010.00905.x

    CAS  Article  PubMed  Google Scholar 

  25. Cavalcanti FR, Oliveira JTA, Martins-Miranda AS, Viégas RA, Silveira JAG (2004) Superoxide dismutase, catalase and peroxidase activities do not confer protection against oxidative damage in salt-stressed cowpea leaves. New Phytol 163(3):563–571. https://doi.org/10.1111/j.1469-8137.2004.01139.x

    CAS  Article  Google Scholar 

  26. Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127(1):194–201. https://doi.org/10.1104/pp.127.1.194

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Chen KM, Gong HJ, Chen GC, Wang SM, Zhang CL (2003a) Up-regulation of glutathione metabolism and changes in redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats. J Plant Physiol 160(3):293–301. https://doi.org/10.1078/0176-1617-00927

    CAS  Article  PubMed  Google Scholar 

  28. Chen S, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003b) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33(5):923–937. https://doi.org/10.1046/j.1365-313X.2003.01679.x

    CAS  Article  PubMed  Google Scholar 

  29. Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51(27):8067–8072. https://doi.org/10.1021/jf034740d

    CAS  Article  PubMed  Google Scholar 

  30. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269(2):291–304. https://doi.org/10.1016/j.canlet.2008.04.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Cusido RM, Palazon J, Altabella T, Morales C (1987) Effect of salinity on soluble protein, free amino acids and nicotine contents in Nicotiana rustica L. Plant Soil 102(1):55–60. https://doi.org/10.1007/BF02370900

    CAS  Article  Google Scholar 

  32. Czegeny G, Wu M, Der A, Eriksson LA, Strid A, Hideg E (2014) Hydrogen peroxide contributes to the ultraviolet-B (280–315 nm) induced oxidative stress of plant leaves through multiple pathways. FEBS Lett 588(14):2255–2261. https://doi.org/10.1016/j.febslet.2014.05.005

    CAS  Article  PubMed  Google Scholar 

  33. Davies KJ (1987) Protein damage and degradation by oxygen radicals I. General aspects. J Biol Chem 262(20):9895–9901

    CAS  PubMed  Google Scholar 

  34. de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEBd, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56(1):87–94. https://doi.org/10.1016/j.envexpbot.2005.01.008

    CAS  Article  Google Scholar 

  35. Devi JR, Thangam EB (2012) Mechanisms of anticancer activity of sulforaphane from Brassica oleracea in HEp-2 human epithelial carcinoma cell line. Asian Pac J Cancer Prev 13(5):2095–2100. https://doi.org/10.7314/APJCP.2012.13.5.2095

    Article  PubMed  Google Scholar 

  36. Donohue K, Heschel MS, Butler CM, Barua D, Sharrock RA, Whitelam GC, Chiang GC (2008) Diversification of phytochrome contributions to germination as a function of seed-maturation environment. New Phytol 177(2):367–379. https://doi.org/10.1111/j.1469-8137.2007.02281.x

    Article  PubMed  Google Scholar 

  37. Duan J, Li J, Guo S, Kang Y (2008) Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J Plant Physiol 165(15):1620–1635. https://doi.org/10.1016/j.jplph.2007.11.006

    CAS  Article  PubMed  Google Scholar 

  38. Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42(2):233–239. https://doi.org/10.1023/A:1002160618700

    CAS  Article  Google Scholar 

  39. Eraslan F, Inal A, Pilbeam DJ, Gunes A (2008) Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul 55(3):207. https://doi.org/10.1007/s10725-008-9277-4

    CAS  Article  Google Scholar 

  40. Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56(1):5–51. https://doi.org/10.1016/S0031-9422(00)00316-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Fahey JW, Haristoy X, Dolan PM, Kensler TW, Scholtus I, Stephenson KK, Talalay P, Lozniewski A (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo [a] pyrene-induced stomach tumors. Proc Natl Acad Sci 99(11):7610–7615. https://doi.org/10.1073/pnas.112203099

    CAS  Article  PubMed  Google Scholar 

  42. Fattahi S, Ardekani AM, Zabihi E, Abedian Z, Mostafazadeh A, Pourbagher R, Akhavan-Niaki H (2013) Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev 14(9):5317–5323. https://doi.org/10.7314/APJCP.2013.14.9.5317

    Article  PubMed  Google Scholar 

  43. Fattahi S, Zabihi E, Abedian Z, Pourbagher R, Motevalizadeh Ardekani A, Mostafazadeh A, Akhavan-Niaki H (2014) Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on hela and BT-474 cell lines. Int J Mol Cell Med 3(2):102–107

    PubMed  PubMed Central  Google Scholar 

  44. Feyereisen R (1999) Insect P450 enzymes. Annu Rev Entomol 44:507–533. https://doi.org/10.1146/annurev.ento.44.1.507

    CAS  Article  PubMed  Google Scholar 

  45. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28(8):1056–1071. https://doi.org/10.1111/j.1365-3040.2005.01327.x

    CAS  Article  Google Scholar 

  46. Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247(1):1–11. https://doi.org/10.1016/0003-9861(86)90526-6

    CAS  Article  PubMed  Google Scholar 

  47. Gautam M, Ge X-H, Li Z-Y (2014) Brassica. In: Pratap A, Kumar J (eds) Alien gene transfer in crop plants: achievements and impacts, vol 2. Springer, New York, pp 207–229. https://doi.org/10.1007/978-1-4614-9572-7_10

    Google Scholar 

  48. Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod 64:175–181. https://doi.org/10.1016/j.indcrop.2014.10.058

    CAS  Article  Google Scholar 

  49. Gil R, Boscaiu M, Lull C, Bautista I, Lidón A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40(9):805–818. https://doi.org/10.1071/FP12359

    CAS  Article  PubMed  Google Scholar 

  50. Gitelson AA, Merzlyak MN (2004) Non-destructive assessment of chlorophyll carotenoid and anthocyanin content in higher plant leaves: principles and algorithms.

  51. Goharrizi KJ, Wilde HD, Amirmahani F, Moemeni MM, Zaboli M, Nazari M, Moosavi SS, Jamalvandi M (2018) Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J Genet 97(5):1433–1444. https://doi.org/10.1007/s12041-018-1042-5

    CAS  Article  Google Scholar 

  52. Goharrizi KJ, Baghizadeh A, Kalantar M, Fatehi F (2019) Assessment of changes in some biochemical traits and proteomic profile of UCB-1 pistachio rootstock leaf under salinity stress. J Plant Growth Regul. https://doi.org/10.1007/s00344-019-10004-3

    Article  Google Scholar 

  53. Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A Cunn. J Exp Bot 51(347):1107–1115. https://doi.org/10.1093/jexbot/51.347.1107

    CAS  Article  PubMed  Google Scholar 

  54. Granier C, Inze D, Tardieu F (2000) Spatial distribution of cell division rate can be deduced from that of p34(cdc2) kinase activity in maize leaves grown at contrasting temperatures and soil water conditions. Plant Physiol 124(3):1393–1402

    CAS  Article  Google Scholar 

  55. Gu X-Y, Kianian SF, Foley ME (2006) Dormancy genes from weedy rice respond divergently to seed development environments. Genetics 172(2):1199–1211. https://doi.org/10.1534/genetics.105.049155

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gu Z-X, Guo Q-H , Gu Y-J (2012) Factors influencing glucoraphanin and sulforaphane formation in Brassica plants: a review. J Integr Agric 11(11):1804–1816. https://doi.org/10.1016/S2095-3119(12)60185-3

    CAS  Article  Google Scholar 

  57. Guo R-f, Yuan G-f, Wang Q-m (2013) Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J Zhejiang Univ Sci B 14(2):124. https://doi.org/10.1631/jzus.B1200096

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228

    CAS  Article  PubMed  Google Scholar 

  59. Hamed KB, Castagna A, Salem E, Ranieri A, Abdelly C (2007) Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regul 53(3):185–194. https://doi.org/10.1007/s10725-007-9217-8

    CAS  Article  Google Scholar 

  60. Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276(14):11078–11085. https://doi.org/10.1074/jbc.M010123200

    CAS  Article  PubMed  Google Scholar 

  61. Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125 (1):189–198. https://doi.org/10.1016/0003-9861(68)90654-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Hniličková H, Hnilička F, Orsák M, Hejnák V (2019) Effect of salt stress on growth, electrolyte leakage, Na+ and K+ content in selected plant species. Plant Soil Environ 65(2):90–96. https://doi.org/10.17221/620/2018-PSE

    Article  Google Scholar 

  63. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347 (2nd edit)

  64. Hughes NM, Reinhardt K, Feild TS, Gerardi AR, Smith WK (2010) Association between winter anthocyanin production and drought stress in angiosperm evergreen species. J Exp Bot 61(6):1699–1709. https://doi.org/10.1093/jxb/erq042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci 97(5):2379–2384. https://doi.org/10.1073/pnas.040569997

    CAS  Article  PubMed  Google Scholar 

  66. Hurry VM, Strand A, Tobiaeson M, Gardestrom P, Oquist G (1995) Cold hardening of spring and winter wheat and rape results in differential effects on growth, carbon metabolism, and carbohydrate content. Plant Physiol 109(2):697–706

    CAS  Article  Google Scholar 

  67. Hussain S, Khan F, Cao W, Wu L, Geng M (2016) Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front Plant Sci 7:439. https://doi.org/10.3389/fpls.2016.00439

    Article  PubMed  PubMed Central  Google Scholar 

  68. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science (New York, NY) 240(4857):1302–1309

    CAS  Article  Google Scholar 

  69. Kabiri R, Nasibi F, Farahbakhsh H (2014) Effect of exogenous salicylic acid on some physiological parameters and alleviation of drought stress in Nigella sativa plant under hydroponic culture. Plant Prot Sci 50(1):43–51. https://doi.org/10.17221/56/2012-pps

    Article  Google Scholar 

  70. Kamiab F, Talaie A, Khezri M, Javanshah A (2014) Exogenous application of free polyamines enhance salt tolerance of pistachio (Pistacia vera L.) seedlings. Plant Growth Regul 72(3):257–268. https://doi.org/10.1007/s10725-013-9857-9

    CAS  Article  Google Scholar 

  71. Kaur H, Sirhindi G, Bhardwaj R, Alyemeni MN, Siddique KHM, Ahmad P (2018) 28-homobrassinolide regulates antioxidant enzyme activities and gene expression in response to salt- and temperature-induced oxidative stress in Brassica juncea. Sci Rep 8(1):8735. https://doi.org/10.1038/s41598-018-27032-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö (2006) Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). Eur J Agron 24(4):291–295. https://doi.org/10.1016/j.eja.2005.08.001

    CAS  Article  Google Scholar 

  73. Keutgen AJ, Pawelzik E (2007) Modifications of strawberry fruit antioxidant pools and fruit quality under NaCl stress. J Agric Food Chem 55(10):4066–4072. https://doi.org/10.1021/jf070010k

    CAS  Article  PubMed  Google Scholar 

  74. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1):1361779. https://doi.org/10.1080/16546628.2017.1361779

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Kordrostami M, Rabiei B, Hassani Kumleh H (2017) Biochemical, physiological and molecular evaluation of rice cultivars differing in salt tolerance at the seedling stage. Physiol Mol Biol Plants 23(3):529–544. https://doi.org/10.1007/s12298-017-0440-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Kumar V, Shriram V, Jawali N, Shitole MG (2007) Differential response of indica rice genotypes to NaCl stress in relation to physiological and biochemical parameters. Arch Agron Soil Sci 53(5):581–592. https://doi.org/10.1080/03650340701576800

    CAS  Article  Google Scholar 

  77. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 70 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  Google Scholar 

  78. Labdelli A, Adda A, Halis Y, Soualem S (2014) Effects of water regime on the structure of roots and stems of durum wheat (Triticum durum Desf.). J Bot. https://doi.org/10.1155/2014/703874.

    Article  Google Scholar 

  79. Laleh G, Frydoonfar H, Heidary R, Jameei R, Zare S (2006) The effect of light, temperature, pH and species on stability of anthocyanin pigments in four Berberis species. Pak J Nutr 5(1):90–92. https://doi.org/10.3923/pjn.2006.90.92

    Article  Google Scholar 

  80. Landi M, Tattini M, Gould KS (2015) Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot 119:4–17. https://doi.org/10.1016/j.envexpbot.2015.05.012

    CAS  Article  Google Scholar 

  81. Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho JY, Lee S, Kim JH, Chung BY (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335. https://doi.org/10.1016/j.plaphy.2013.05.047

    CAS  Article  PubMed  Google Scholar 

  82. Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251(4):899–912. https://doi.org/10.1007/s00709-013-0592-x

    CAS  Article  PubMed  Google Scholar 

  83. Liang H, Yuan QP, Dong HR, Liu YM (2006) Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J Food Compos Anal 19(5):473–476. https://doi.org/10.1016/j.jfca.2005.11.005

    CAS  Article  Google Scholar 

  84. Lim JH, Park KJ, Kim BK, Jeong JW, Kim HJ (2012) Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food Chem 135(3):1065–1070. https://doi.org/10.1016/j.foodchem.2012.05.068

    CAS  Article  PubMed  Google Scholar 

  85. Lin CC, Kao CH (1999) NaCl induced changes in ionically bound peroxidase activity in roots of rice seedlings. Plant Soil 216(1):147. https://doi.org/10.1023/A:1004714506156

    CAS  Article  Google Scholar 

  86. López-Berenguer C, Martínez-Ballesta MC, García-Viguera C, Carvajal M (2008) Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci 174(3):321–328. https://doi.org/10.1016/j.plantsci.2007.11.012

    CAS  Article  Google Scholar 

  87. Lopez-Berenguer C, Martinez-Ballesta Mdel C, Moreno DA, Carvajal M, Garcia-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57(2):572–578. https://doi.org/10.1021/jf802994p

    CAS  Article  PubMed  Google Scholar 

  88. Mahmoudi H, Kaddour R, Huang J, Nasri N, Olfa B, M’Rah S, Hannoufa A, Lachaâl M, Ouerghi Z (2011) Varied tolerance to NaCl salinity is related to biochemical changes in two contrasting lettuce genotypes. Acta Physiol Plant 33(5):1613–1622. https://doi.org/10.1007/s11738-010-0696-2

    CAS  Article  Google Scholar 

  89. Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52(2):113–122. https://doi.org/10.1016/j.envexpbot.2004.01.009

    CAS  Article  Google Scholar 

  90. Mao Y-B, Tao X-Y, Xue X-Y, Wang L-J, Chen X-Y (2011) Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Res 20(3):665–673. https://doi.org/10.1007/s11248-010-9450-1

    CAS  Article  PubMed  Google Scholar 

  91. McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055

    CAS  PubMed  Google Scholar 

  92. Meir S, Philosoph-Hadas S, Aharoni N (1992) Ethylene-increased accumulation of fluorescent lipid-peroxidation products detected during senescence of parsley by a newly developed method. J Am Soc Hortic Sci 117(1):128–132. https://doi.org/10.21273/JASHS.117.1.128

    CAS  Article  Google Scholar 

  93. Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49(1):69–76. https://doi.org/10.1016/S0098-8472(02)00058-8

    CAS  Article  Google Scholar 

  94. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275(43):33712–33717. https://doi.org/10.1074/jbc.M001667200

    CAS  Article  PubMed  Google Scholar 

  95. Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in arabidopsis by defense signaling pathways. Plant Physiol 131(1):298–308. https://doi.org/10.1104/pp.011015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    CAS  Article  PubMed  Google Scholar 

  97. Mulligan GA, Frankton C (1962) Taxonomy of the genus cardaria with particular reference to the species introduced into North America. Can J Bot 40(11):1411–1425. https://doi.org/10.1139/b62-136

    Article  Google Scholar 

  98. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Nafisi M, Sønderby IE, Hansen BG, Geu-Flores F, Nour-Eldin HH, Nørholm MH, Jensen NB, Li J, Halkier BA (2006) Cytochromes P450 in the biosynthesis of glucosinolates and indole alkaloids. Phytochem Rev 5(2–3):331–346. https://doi.org/10.1007/s11101-006-9004-6

    CAS  Article  Google Scholar 

  100. Noreen Z, Ashraf M, Akram NA (2010) Salt-induced regulation of some key antioxidant enzymes and physio-biochemical phenomena in five diverse cultivars of turnip (Brassica rapa L.). J Agron Crop Sci 196(4):273–285. https://doi.org/10.1111/j.1439-037X.2010.00420.x

    CAS  Article  Google Scholar 

  101. Núñez M, Mazzafera P, Mazorra LM, Siqueira WJ, Zullo MAT (2003) Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol Plant 47(1):67–70. https://doi.org/10.1023/A:1027380831429

    Article  Google Scholar 

  102. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Pattanagul W, Thitisaksakul M (2008) Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol 46(10):736–742

    CAS  PubMed  Google Scholar 

  104. Pedras MSC, Okinyo-Owiti DP, Thoms K, Adio AM (2009) The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds. Phytochemistry 70(9):1129–1138. https://doi.org/10.1016/j.phytochem.2009.05.015

    CAS  Article  PubMed  Google Scholar 

  105. Piao HL, Lim JH, Kim SJ, Cheong GW, Hwang I (2001) Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J 27(4):305–314. https://doi.org/10.1046/j.1365-313x.2001.01099.x

    CAS  Article  PubMed  Google Scholar 

  106. Qasim M, Ashraf M, Ashraf M, Rehman S-U, Rha E (2003) Salt-induced changes in two canola cultivars differing in salt tolerance. Biol Plant 46(4):629–632. https://doi.org/10.1023/A:1024844402000

    Article  Google Scholar 

  107. Radonic A, Blazevic I, Mastelic J, Zekic M, Skocibusic M, Maravic A (2011) Phytochemical analysis and antimicrobial activity of Cardaria draba (L.) Desv volatiles. Chem Biodivers 8(6):1170–1181. https://doi.org/10.1002/cbdv.201000370

    CAS  Article  PubMed  Google Scholar 

  108. Rask L, Andréasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol. https://doi.org/10.1023/A:1006380021658

    Article  PubMed  Google Scholar 

  109. Rebey IB, Bourgou S, Rahali FZ, Msaada K, Ksouri R, Marzouk B (2017) Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. J Food Drug Anal 25(2):391–402. https://doi.org/10.1016/j.jfda.2016.10.001

    CAS  Article  Google Scholar 

  110. Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13(2):351–367. https://doi.org/10.1105/tpc.13.2.351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Riahi-Madvar A, Mohammadi M, Pourseyedi S (2014) Elicitors induced sulforaphane production in Lepidium draba. Asian J Biomed Pharm Sci 4(35):64. https://doi.org/10.15272/ajbps.v4i35.561

    CAS  Article  Google Scholar 

  112. Sharma A, Kumar V, Singh R, Thukral AK, Bhardwaj R (2015) 24-Epibrassinolide induces the synthesis of phytochemicals effected by imidacloprid pesticide stress in Brassica juncea L. J Pharmacognosy Phytochem 4(3):60–64.

    CAS  Google Scholar 

  113. Sharma A, Thakur S, Kumar V, Kanwar MK, Kesavan AK, Thukral AK, Bhardwaj R, Alam P, Ahmad P (2016) Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L through the modulation of stress markers. Front Plant Sci 7:1569. https://doi.org/10.3389/fpls.2016.01569

    Article  PubMed  PubMed Central  Google Scholar 

  114. Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019a) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285. https://doi.org/10.3390/biom9070285

    CAS  Article  PubMed Central  Google Scholar 

  115. Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019b) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452

    CAS  Article  PubMed Central  Google Scholar 

  116. Shi H, Wang X, Ye T, Chen F, Deng J, Yang P, Zhang Y, Chan Z (2014) The cysteine2/histidine2-type transcription factor zinc finger of Arabidopsis thaliana6 modulates biotic and abiotic stress responses by activating salicylic acid-related genes and C-repeat-binding factor genes in Arabidopsis. Plant Physiol 165(3):1367–1379. https://doi.org/10.1104/pp.114.242404

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Shoeva OY, Mock H-P, Kukoeva TV, Börner A, Khlestkina EK (2016) Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of Hordeum vulgare. PLoS ONE 11(10):e0163782. https://doi.org/10.1371/journal.pone.0163782

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Taïbi K, Taïbi F, Ait Abderrahim L, Ennajah A, Belkhodja M, Mulet JM (2016) Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany 105:306–312. https://doi.org/10.1016/j.sajb.2016.03.011

    CAS  Article  Google Scholar 

  119. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101(30):11030–11035. https://doi.org/10.1073/pnas.0404206101

    CAS  Article  PubMed  Google Scholar 

  120. Tanveer M, Shahzad B, Sharma A, Biju S, Bhardwaj R (2018) 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiol Biochem 130:69–79. https://doi.org/10.1016/j.plaphy.2018.06.035

    CAS  Article  PubMed  Google Scholar 

  121. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61(15):4449–4459. https://doi.org/10.1093/jxb/erq251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527

    CAS  Article  Google Scholar 

  123. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8(1):269–282. https://doi.org/10.1007/s11101-008-9103-7

    CAS  Article  Google Scholar 

  124. Vattem DA, Lin YT, Labbe RG, Shetty K (2004) Phenolic antioxidant mobilization in cranberry pomace by solid-state bioprocessing using food grade fungus Lentinus edodes and effect on antimicrobial activity against select food borne pathogens. Innov Food Sci Emerg Technol 5(1):81–91. https://doi.org/10.1016/j.ifset.2003.09.002

    CAS  Article  Google Scholar 

  125. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    CAS  Article  Google Scholar 

  126. Wagner GJ (1979) Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiol 64(1):88–93. https://doi.org/10.1104/pp.64.1.88

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Wang Y, Li X, Li J, Bao Q, Zhang F, Tulaxi G, Wang Z (2016) Salt-induced hydrogen peroxide is involved in modulation of antioxidant enzymes in cotton. Crop J 4(6):490–498. https://doi.org/10.1016/j.cj.2016.03.005

    Article  Google Scholar 

  128. Wardlaw IF, Willenbrink J (1994) Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Funct Plant Biol 21(3):255–271. https://doi.org/10.1071/PP9940255

    CAS  Article  Google Scholar 

  129. Wei P, Yang Y, Wang F, Chen H (2015) Effects of drought stress on the antioxidant systems in three species of Diospyros L. Hortic Environ Biotechnol 56(5):597–605. https://doi.org/10.1007/s13580-015-0074-5

    CAS  Article  Google Scholar 

  130. Wise RR, Naylor AW (1987) Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83(2):278–282. https://doi.org/10.1104/pp.83.2.278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79A2 from Arabidopsis thaliana L catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate. J Biol Chem 275(19):14659–14666. https://doi.org/10.1074/jbc.275.19.14659

    CAS  Article  PubMed  Google Scholar 

  132. Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55(6):782. https://doi.org/10.1134/S1021443708060071

    CAS  Article  Google Scholar 

  133. Yemm E, Cocking E, Ricketts R (1955) The determination of amino-acids with ninhydrin. Analyst 80(948):209–214. https://doi.org/10.1039/AN9558000209

    CAS  Article  Google Scholar 

  134. Yen WJ, Chyau CC, Lee CP, Chu HL, Chang LW, Duh PD (2013) Cytoprotective effect of white tea against H2O2-induced oxidative stress in vitro. Food Chem 141(4):4107–4114. https://doi.org/10.1016/j.foodchem.2013.06.106

    CAS  Article  PubMed  Google Scholar 

  135. Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121(4):1014–1019. https://doi.org/10.1016/j.foodchem.2010.01.040

    CAS  Article  Google Scholar 

  136. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci USA 89(6):2399–2403. https://doi.org/10.1073/pnas.89.6.2399

    CAS  Article  PubMed  Google Scholar 

  137. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Barafza Keshavarz Pars Company for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kiarash Jamshidi Goharrizi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jamshidi Goharrizi, K., Riahi-Madvar, A., Rezaee, F. et al. Effect of Salinity Stress on Enzymes’ Activity, Ions Concentration, Oxidative Stress Parameters, Biochemical Traits, Content of Sulforaphane, and CYP79F1 Gene Expression Level in Lepidium draba Plant. J Plant Growth Regul 39, 1075–1094 (2020). https://doi.org/10.1007/s00344-019-10047-6

Download citation

Keywords

  • L. draba
  • Sulforaphane
  • CYP79F1
  • Oxidative stress
  • Biochemical traits
  • Ions concentration