Skip to main content

Advertisement

Log in

Effects of Rahnella aquatilis JZ-GX1 on Treat Chlorosis Induced by Iron Deficiency in Cinnamomum camphora

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

With the increasing popularity of urban landscaping, there is a greater need to address iron deficiency and chlorosis in Cinnamomum camphora. Beneficial microorganisms can play an important role in improving plant iron nutrition. In this study, we evaluated the greening effect that results from inoculating C. camphora with Rahnella aquatilis JZ-GX1. We conducted in vitro experiments to determine the effectiveness of JZ-GX1 in reducing extracellular iron(III) ions in siderophores and producing organic acids under low-iron conditions. Potted, chlorotic C. camphora seedlings were inoculated, and parameters related to growth and iron nutritional status were measured. Inoculation by JZ-GX1 had a more pronounced greening effect on C. camphora than the traditional iron sulfate treatment for plant iron deficiency. Inoculated plants exhibited higher levels of active iron in the leaves, enhanced rhizosphere acidification capacity and ferric chelate reductase activity. Furthermore, the complete root system and chloroplast developmental structures were observed. Our results demonstrate the potential roles of R. aquatilis JZ-GX1 in promoting iron absorption in C. camphora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abadia J, Vazquez S, Rellan-Alvarez R, El-Jendoubi H, Abadía A, Alvarez Fernandez A, Lopez-Millan AF (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482

    Article  CAS  PubMed  Google Scholar 

  • Aras A, Arikan S, İpek M, Eşitken A, Pırlak P, Figen Dönmez M, Turan M (2018) Plant growth promoting rhizobacteria enhanced leaf organic acids, FC-R activity and Fe nutrition of apple under lime soil conditions. Acta Physiol Plant 40:3–8

    Article  CAS  Google Scholar 

  • Arnow L (1937) Colorimetric determination of the components of 3,4–dihydroxyphenylalanine tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Aznar A, Chen NW, Rigault M, Riache N, Joseph D, Desmaële D, Mouille G, Boutet S, Soubigou-Taconnat L, Renou JP (2014) Scavenging iron: a novel mechanism of plant immunity activation by microbial siderophores. Plant Physiol 164:2167–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienfait HF (1989) Prevention of stress in iron metabolism of plants. Act Bot Neerl 3:105–129

    Article  Google Scholar 

  • Boxma R (1972) Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands. Plant Soil 37:233–234

    Article  CAS  Google Scholar 

  • Calderón H, Aviles Garcia ME, Castulo Rubio DY (2017) Volatile compounds from beneficial or pathogenic bacteria differentially regulate root exudation, transcription of iron transporters, and defense signaling pathways in Sorghum bicolor. Plant Mol Biol 96:291–304

    Article  CAS  Google Scholar 

  • Calvo J, Calvente V, de Orellano ME, Benuzzi D, Sanz MI (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int J Food Microbiol 113:251–257

    Article  PubMed  Google Scholar 

  • Chen CY, Liu HJ, Shu QL, Liu XL, Zhang X (2008) Studies on the main casual factors affecting Cinnamomum camphora yellowing under urban conditions. For Res 21:625–629 (in Chinese)

    Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminum toxicity in two contrasting soybean genotypes. Physiol Plant 122:190–199

    Article  CAS  Google Scholar 

  • Fan B, Wang C, Song XF, Ding XL, Wu LM, Wu HJ, Gao XW, Borriss R (2018) Bacillus velezensis FZB42 in 2018: the Gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Ye J, Wu B, Huang L, Ren J, Wu X (2018) Effects of genetically modified Burkholderia pyrrocinia JK-SH007E1 on soil microbial community in poplar rhizosphere. For Pathol 48:124304

    Article  Google Scholar 

  • Ipek M, Aras S, Arikan S, Esitken A, Pırlak L, Figen Dönmez M, Turan M (2017) Root plant growth promoting rhizobacteria inoculations increase ferric chelate reductase (FC-R) activity and Fe nutrition in pear under calcareous soil conditions. Sci Hortic 219:144–151

    Article  CAS  Google Scholar 

  • Koseoglu AT, Acikgoz V (1995) Determination of iron chlorosis with extractable iron analysis in peach leaves. J Plant Nutr 18:153–161

    Article  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS et al (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  PubMed  Google Scholar 

  • Li GE (2013) Isolation and identification of phytate-degrading rhizobacteria and its plant growth promoting mechanisms. Nanjing Forestry University, Nanjing, pp 1–82 (in Chinese)

    Google Scholar 

  • Li LM, Wu LH, Ma GR (2009) Study on the chlorosis of camphor tree. Chin J Soil Sci 40:158–161 (in Chinese)

    CAS  Google Scholar 

  • Li GE, Wu XQ, Ye JR, Hou L, Zhou AD, Zhao L (2013) Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine. World J Microbiol Biotechnol 29:2181–2193

    Article  CAS  PubMed  Google Scholar 

  • Li RX, Cai F, Pang G, Shen QR, Li R, Chen W (2015) Solubilisation of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. PLoS ONE 10:68–85

    Google Scholar 

  • Li Q, Yang A, Zhang WH (2016) Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J Exp Bot 67:6431–6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wu CF, Xing Z, Gao BL, Zhang LQ (2017) Engineering the bacterial endophyte Burkholderia pyrrocinia JK-SH007 for the control of lepidoptera larvae by introducing the cry218 genes of Bacillus thuringiensis. Biotechnol Biotec EQ 31:1167–1172

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (2003) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  Google Scholar 

  • Lindsay WL, Sehwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 7:135–147

    Google Scholar 

  • Liu D, Yang QQ, Ge K (2017a) Promotion of iron nutrition and growth on peanut by Paenibacillus illinoisensis and Bacillus sp. strains in calcareous soil. Braz J Microbiol 48:656–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Fu JW, Tang N, Cao Y, Turner BL, Chen Y, Ma LQ (2017b) Phytate induced significant arsenic uptake plant growth in arsenic-hyperaccumulator Pteris vittata. Environ Pollut 226:212–218

    Article  CAS  PubMed  Google Scholar 

  • Machuca A, Milagres AMF (2003) Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177–181

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Medina A, Van Wees SCM, Corné MJ (2017) Airborne signals from Trichoderma fungi stimulate iron uptake responses in roots resulting in priming of jasmonic acid-dependent defences in shoots of Arabidopsis thaliana and Solanum lycopersicum. Plant Cell Environ 40:2691–2705

    Article  PubMed  CAS  Google Scholar 

  • Mehra OP, Jackson ML (2013) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner 7:317–327

    Article  Google Scholar 

  • Mengel K, Geurtzen G (1988) Relationship between iron chlorosis and alkalinity in Zea mays. Physiol Plant 72:460–465

    Article  CAS  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Mosqueda MDL, Velázquez-Becerra C, Macías-Rodríguez LI et al (2013) Arthrobacter agilis UMCV2 induces iron acquisition in Medicago truncatula (strategy I plant) in vitro via dimethylhexadecylamine emission. Plant Soil 362:51–66

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pii Y, Marastoni L, Springeth C, Chiara Fontanella M, Maria Beone G, Cesco S, Mimmo T (2015) Modulation of the Fe acquisition process by Azospirillum brasilense in cucumber plants. Environ Exp Bot 130:216–225

    Article  CAS  Google Scholar 

  • Raza W, Shen Q (2010) Growth, Fe3+ reductase activity, and siderophore production by Paenibacillus polymyxa SQR-21 under differential iron conditions. Curr Microbiol 61:390–395

    Article  CAS  PubMed  Google Scholar 

  • Shenker M, Oliver I, Helman M (1992) Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J Plant Nutr 15:2173–2182

    Article  CAS  Google Scholar 

  • Snow GA (1954) Mycobactin, a growth factor for Mycobacterium johnei: II. Degradation and identification of fragments. J Chem Soc 0:2588–2596

    Article  CAS  Google Scholar 

  • Song FX, Wu XQ, Zhao Q (2017) Antagonism of plant growth-promoting bacteria Rahnella aquatilis JZ-GX1 to canker in poplar. J Nanjing For Univ 41:42–48 (in Chinese)

    Google Scholar 

  • Stookey LL (1970) Ferrozine: a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentumm S, Van Verk MC, Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. PNAS 115:213–222

    Article  CAS  Google Scholar 

  • Sun HQ, Zhang WC, Lu XM (2008) Siderophore production from 27 filamentous fungal strains and a novel siderophore with potential biocontrol applications from Aspergillus niger An76. J Life Sci 1:19–26

    Google Scholar 

  • Tsai HH, Schmidt W (2017) Mobilization of iron by plant-borne coumarins. Trends Plant Sci 22:538–548

    Article  CAS  PubMed  Google Scholar 

  • Verbon EH, Trapet PL, Stringlis IA, Kruijs S, Bakker PAHM, Pieterse CMJ (2017) Iron and immunity. Annu Rev Phytopathol 55:355–375

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Joshi R, Sharma KC, Rahi P, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad-spectrum plant growth-promotion potential. J Microbiol Biotechnol 20:1724–1734

    CAS  PubMed  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu WJ (2014) Research on control measures of physiological chlorosis for Cinnamomum camphora. Anhui Agricultural University, Hefei, pp 1–52 (in Chinese)

    Google Scholar 

  • Zhang HM, Sun Y, Xie XT, Kim MS, Dowd SE, Pare PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Wang F (2014) Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. J Basic Microbiol 54:115–124

    Article  CAS  Google Scholar 

  • Zhou C, Guo J, Zhu L, Xiao X, Xie Y, Zhu J, Ma Z, Wang J (2016) Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Plant Physiol Biochem 105:162–173

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhu L, Ma ZY, Wang JF (2017) Improved iron acquisition of Astragalus sinicus under low iron-availability conditions by soil-borne bacteria Burkholderia cepacian. J Plant Interact 13:9–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2017YFD0600104) and the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD). We are grateful to Dr. De-Wei Li of the Connecticut Agricultural Experiment Station, USA for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, WL., Wu, XQ. & Zhao, YJ. Effects of Rahnella aquatilis JZ-GX1 on Treat Chlorosis Induced by Iron Deficiency in Cinnamomum camphora. J Plant Growth Regul 39, 877–887 (2020). https://doi.org/10.1007/s00344-019-10029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-10029-8

Keywords

Navigation