Skip to main content

Advertisement

Log in

Application of Streptomyces pactum Act12 Enhances Drought Resistance in Wheat

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The use of beneficial microbes to improve drought resistance in crops has great application potential in agricultural production, yet the effects of actinomycetes upon crop resistance to drought are rarely reported. Streptomyces pactum Act12 is a known multi-functional biocontrol agent of soil-borne diseases in several horticultural crops and medicinal plants. Here, we systematically analyzed how Act12 treatment affects drought resistance in drought-sensitive wheat (Triticum aestivum L.) cultivar Xinong 979 by considering both its effects and underlying mechanisms. After seed exposure to a cell-free culture filtrate of Act12, we measured several plant growth variables, osmotic adjustment and antioxidant capacity, cell membrane peroxidation, and drought resistance-related gene expression in wheat seedlings under drought stress conditions simulated by polyethylene glycol 6000. Results showed that, under drought stress, wheat seedling exposure to Act12 cell-free filtrate facilitated plant growth, with significant increases in shoot fresh weight (21.3%), shoot length (10.3%), and root length (13.6%). Act12 treatment also significantly increased total soluble sugar content in wheat leaves while decreasing their malondialdehyde content by 20.5%. Under non-drought conditions, Act12 treatment increased the content of both proline and glutathione in wheat leaves; however, both were lowered in Act12-treated plants compared with non-treated plants at 96 h of drought stress. Further analysis revealed that Act12 treatment increased the content of leaf abscisic acid and upregulated the expression levels of several drought resistance-related genes, such as EXPA2, EXPA6, P5CS, and SnRK2. These results suggest that application of S. pactum Act12 can enhance the osmotic adjustment and antioxidant capacity of plants via induction of abscisic acid accumulation and up-regulation of drought resistance-related gene expression, thereby mitigating drought stress impact in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams DO, Liyanage C (1991) Modification of an enzymatic glutathione assay for determination of total glutathione in grapevine tissues. Am J Enol Viticult 42:137–140

    CAS  Google Scholar 

  • Armada E, Roldán A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420

    Article  CAS  PubMed  Google Scholar 

  • Asghar HN, Zahir ZA, Akram MA, Ahmad HT, Hussain MB (2015) Isolation and screening of beneficial bacteria to ameliorate drought stress in wheat. Soil Environ 34:100–110

    Google Scholar 

  • Barr HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficit in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569

    Article  CAS  PubMed  Google Scholar 

  • Chao S, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167:1009–1017

    Article  CAS  Google Scholar 

  • Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W (2016) Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS ONE 11:e0153494

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng LJ, Xue QH (2012) Laboratoty manual of microbiology. Science Press, Beijing, pp 80–83

    Google Scholar 

  • Cho SM, Kang BR, Cheol KY (2013) Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol J 29:209–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153:79–90

    Article  CAS  PubMed  Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3:117–124

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2010) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32:1682–1694

    Article  CAS  Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Wang Y, Zhang H, Qu G, Wang T, Sun Q, Liang D (2017) Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Sci Rep 7:16680–16693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Habibzadeh Y, Jalilian J, Zardashti MR, Pirzad A, Eini O (2015) Some morpho-physiological characteristics of mung bean mycorrhizal plants under different irrigation regimes in field condition. J Plant Nutr 38:1754–1767

    Article  CAS  Google Scholar 

  • Halford NG, Hey SJ (2009) Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 419:247–259

    Article  CAS  PubMed  Google Scholar 

  • He JX, Wang J, Liang HG (2010) Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plantarum 93:771–777

    Article  Google Scholar 

  • Hedge JE, Hofreiter BT (1962) Determination of total carbohydrates by anthrone method. In: Whistler RL, BeMiller JN (eds) Methods in carbohydrate chemistry. Academic Press, New York, p 420

    Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:357–359

    Google Scholar 

  • Hodges MD, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Kasim WA, Osman ME, Omar MN, El-Daim IAA, Meijer J (2013) Control of drought stress in wheat using plant-growth-promoting bacteria. J Plant Growth Regul 32:122–130

    Article  CAS  Google Scholar 

  • Kim MJ, Park MJ, Seo PJ, Song JS, Kim HJ, Park CM (2012) Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J 448:353–363

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593

    Article  CAS  PubMed  Google Scholar 

  • Li F, Han Y, Feng Y, Xing S, Zhao M, Chen Y, Wang W (2013) Expression of wheat expansin driven by the RD29 promoter in tobacco confers water-stress tolerance without impacting growth and development. J Biotechnol 163:281–291

    Article  CAS  PubMed  Google Scholar 

  • Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29:201–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu D, Zhang H, Gao H, Guo X, Wang D, Zhang X, Zhang A (2007) The alpha- and beta-expansin and xyloglucan endotransglucosylase/hydrolase gene families of wheat: molecular cloning, gene expression, and EST data mining. Genomics 90:516–529

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang YH, Yin H, Wang WX, Zhao XM, Du YG (2013) Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiol Biochem 62:33–40

    Article  CAS  PubMed  Google Scholar 

  • Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, Mcqueenmason SJ, Calderini DF (2010) Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.). J Exp Bot 61:1147–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JN, Liu YT, Li YL, Sun YY, Yang BM, Lai HX, Xue QH (2017) Effects and mechanism of two Streptomyces strains on promoting plant growth and increasing grain yield of maize. Chin J Appl Ecol 28:315–326

    Google Scholar 

  • Man S, Li XF, Ma XY, Peng XJ, Zhao AG, Cheng LQ, Chen SY, Liu GS, Stewart N, Liu GS (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181:652–659

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Menconi M, Sgherri CLM, Pinzino C, Navarilzzo F (1995) Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot 46:1123–1130

    Article  CAS  Google Scholar 

  • Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:689–701

    Article  Google Scholar 

  • Navarro GA, Del PBÁS, Morte A, Sánchez-Blanco MJ (2011) Effects of nursery preconditioning through mycorrhizal inoculation and drought in Arbutus unedo L. plants. Mycorrhiza 21:53–64

    Article  Google Scholar 

  • Nouriganbalani A, Nouriganbalani G, Hassanpanah D (2009) Effects of drought stress condition on the yield and yield components of advanced wheat genotypes in Ardabil, Iran. J Food Agric Environ 7:228–234

    Google Scholar 

  • Patnaik D, Khurana P (2001) Wheat biotechnology: a minireview. Electron J Biotechnol 4:4059–4070

    Google Scholar 

  • Rahimzadeh S, Pirzad A (2017) Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza 27:1–16

    Article  Google Scholar 

  • Sandhya V, Ali SZ, Grover M, Reddy G, Venkateswarlu B (2010) Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regul 62:21–30

    Article  CAS  Google Scholar 

  • Shakir MA, Bano A, Arshad M (2012) Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31:108–112

    CAS  Google Scholar 

  • Sun JZ, Xue QH, Tang M, Cao SM, Xing SL (2009) Study on the effect of actinomycetes on microflora of replanted strawberry’s root domain and the bio-control effectiveness. J Northwest A & F Univ 37:153–158

    Google Scholar 

  • Sun L, Yang L, Kong X, Dan Z, Pan J, Yan Z, Li W, Li D, Yang X (2012) ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep 31:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Eldaim IAA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ü (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS ONE 9:e96086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkateswarlu B, Shanker AK (2009) Climate change and agriculture: adaptation and mitigation strategies. Indian J Agron 54:226–230

    Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42:166–172

    Article  CAS  Google Scholar 

  • Yandigeri MS, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sugaya S, Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61:563–574

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010a) Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 5:e16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010b) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interactions 23:1097–1104

    Article  CAS  Google Scholar 

  • Zhang HY, Xue QH, Shen GH, Wang DS (2013) Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. Chin J Appl Ecol 24:2287–2293

    CAS  Google Scholar 

  • Zhao J, Du JZ, Que QH, Duan CM, Wang LN, Shen GH, Chen Q, Xue L (2010) The growth-promoting effect and resistance induction of 3 antagonistic actinomyces on Cucumis melo L. J Northwest A & F Univ 38:109–116

    Google Scholar 

  • Zheng Z, Xu X, Crosley RA, Greenwalt SA, Sun Y, Blakeslee B, Wang L, Ni W, Sopko MS, Yao C (2010) The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth in Arabidopsis. Plant Physiol 153:99–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Fund Youth Project (31600407), the Fundamental Research Fund for the Central Universities (Z109021616), and the National Key Technology R&D Program (2012BAD14B11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangxian Lai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Guo, Q., Jing, Y. et al. Application of Streptomyces pactum Act12 Enhances Drought Resistance in Wheat. J Plant Growth Regul 39, 122–132 (2020). https://doi.org/10.1007/s00344-019-09968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09968-z

Keywords

Navigation