Skip to main content

Advertisement

Log in

Trehalose: A Key Organic Osmolyte Effectively Involved in Plant Abiotic Stress Tolerance

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Trehalose is a natural non-reducing sugar that is found in the vast majority of organisms such as bacteria, yeasts, invertebrates and even in plants. Regarding its features, it is considered as a unique compound. It plays a key role as a carbon source in lower organisms and as an osmoprotectant or a stabilizing molecule in higher animals and plants. Although in plants it is present in a minor quantity, its levels rise upon exposure to abiotic stresses. Trehalose is believed to play a protective role against different abiotic stressful cues such as temperature extremes, salinity, desiccation. Moreover, it regulates water use efficiency and stomatal movement in most plants. Detectable endogenous trehalose levels are vital for sustaining growth under stressful cues. Exogenously applied trehalose in low amounts mitigates physiological and biochemical disorders induced by various abiotic stresses, delays leaf abscission and stimulates flowering in crops. External application of trehalose also up-regulates the stress responsive genes in plants exposed to environmental cues. The genetically modified plants with trehalose biosynthesis genes exhibit improved tolerance against stressful conditions. An increased level of trehalose has been observed in transgenic plants over-expressing genes of microbial trehalose biosynthesis. However, these transgenic plants display enhanced tolerance to heat, cold, salinity, and drought tolerance. Due to multiple bio-functions of this sugar, it has gained considerable ground in various fields. However, exogenous use of this bio-safe sugar would only be possible under field conditions upon adopting strategies of low-cost production of trehalose. In short, trehalose is a unique chemical that preserves vitality of plant life under harsh ecological conditions. Certainly, the new findings of this disaccharide will revolutionize a wide array of new avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdallah MMS, Abdelgawad ZA, El-Bassiouny HMS (2016) Alleviation of the adverse effects of salinity stress using trehalose in two rice varieties. South Afr J Bot 103:275–282

    Article  CAS  Google Scholar 

  • Akram NA, Noreen S, Noreen T, Ashraf M (2015) Exogenous application of trehalose alters growth, physiology and nutrient composition in radish (Raphanus sativus L.) plants under water-deficit conditions. Braz J Bot 38(3):431–439

    Article  Google Scholar 

  • Akram NA, Waseem M, Ameen R, Ashraf M (2016a) Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiol Plant 1(38):1–10

    Google Scholar 

  • Akram NA, Shafiq S, Ashraf M, Aisha R, Sajid MA (2016b) Drought-induced anatomical changes in radish (Raphanus sativus L.) leaves supplied with trehalose through different modes. Arid Land Res Manag 30(4):412–420

    Article  CAS  Google Scholar 

  • Akram NA, Irfan I, Ashraf M (2016c) Trehalose-induced modulation of antioxidative defence system in radish (Raphanus sativus L.) plants subjected to water-deficit conditions. Agrochimica 60(3):186–198

    CAS  Google Scholar 

  • Aldesuquy H, Ghanem H (2015) Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by up-regulating membrane characteristics and antioxidant defense system. J Hortic 2:1–10

    Article  Google Scholar 

  • Ali Q, Ashraf M (2011) Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism. J Agron Crop Sci 197(4):258–271

    Article  CAS  Google Scholar 

  • Ali Q, Ashraf M, Anwar F, Al-Qurainy F (2012) Trehalose-induced changes in seed oil composition and antioxidant potential of maize grown under drought stress. J Am Oil Chem Soc 89(8):1485–1493

    CAS  Google Scholar 

  • Almeida AM, Silva AB, Aráujo SS, Cardoso LA, Santos DM (2007) Responses to water withdrawal of tobacco plants genetically engineered with the AtTPS1 gene: a special reference to photosynthetic parameters. Euphytica 154:113–126

    Article  CAS  Google Scholar 

  • Ambastha V, Tiwari BS (2015) Cellular water and anhydrobiosis in plants. J Plant Growth Regul 34(3):665–671

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    Article  CAS  PubMed  Google Scholar 

  • Avonce N, Leyman B, Mascorro-Gallardo JO, Van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid and stress signaling. Plant Physiol 136:3649–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae H, Herman E, Sicher R (2005) Exogenous trehalose promotes non-structural carbohydrate accumulation and induces chemical detoxification stress response proteins in Arabidopsis thaliana grown in liquid media. Plant Sci 168:1293–1301

    Article  CAS  Google Scholar 

  • Barnett KL, Facey SL (2016) Grasslands, invertebrates, and precipitation: a review of the effects of climate change. Front Plant Sci 7:1–8

    Article  CAS  Google Scholar 

  • Becker A, Scholeder P, Wegener G (1996) The regulation metabolism in insects. Experientia 52:433–439

    Article  CAS  PubMed  Google Scholar 

  • Blazquez MA, Santos E, Floras CL, Martinez-Zapater JM, Salinas J, Gancedo C (1998) Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J 13:685–689

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli J, Kraemer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose over production: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cesaro A, De Giacomo O, Sussich F (2008) Water interplay in trehalose polymorphism. Food Chem 106(4):1318–1328

    Article  CAS  Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    Article  CAS  PubMed  Google Scholar 

  • Chang B, Yang L, Cong W, Zu Y, Tang Z (2015) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77:140–148

    Article  CAS  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5(3):250–257

    Article  CAS  PubMed  Google Scholar 

  • Cortina C, Culianez-Macia FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone” fact and fantasy. Adv Exp Med Biol 594:143–158

    Article  PubMed  Google Scholar 

  • Dawood MG (2016) Influence of osmoregulators on plant tolerance to water stress. Scientia 13(1):42–58

    CAS  Google Scholar 

  • Delorge I, Janiak M, Carpentier S, Van Dijck P (2014) Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. Front Plant Sci 5(147):1–9

    Google Scholar 

  • Dijksterhuis J, van Driel KG, Sanders MG, Molenaar D, Houbraken JA, Samson RA, Kets EP (2002) Trehalose degradation and glucose efflux precede cell ejection during germination of heat-resistant ascospores of Talaromyces macrosporus. Arch Microbiol 178:1–7

    Article  CAS  PubMed  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152(9):2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Dolatabadian A, Jouneghani RS (2009) Impact of exogenous ascorbic acid on antioxidant activity and some physiological traits of common bean subjected to salinity stress. Bot Hort Agrobot Cluj 37(2):165–172

    CAS  Google Scholar 

  • Duman F, Aksoy A, Aydin Z, Temizgul R (2011) Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water Air Soil Pollut 217:545–556

    Article  CAS  Google Scholar 

  • Einfalt T, Planinšek O, Hrovat K (2013) Methods of amorphization and investigation of the amorphous state. Acta Pharm 63(3):305–334

    Article  CAS  Google Scholar 

  • Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multi functional molecule. Glycobiology 13(4):17–27

    Article  Google Scholar 

  • Farías-Rodriguez R, Mellor RB, Arias C, Peña-Cabriales JJ (1998) The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris) and its correlation with resistance to drought stress. Physiol Plant 102:353–359

    Article  Google Scholar 

  • Feofilova EP (1992) Trehalose, stress, and anabiosis. Microbiology 61:513–523

    Google Scholar 

  • Fernandez O, Béthencourt L, Quero A, Sangwan RS, Clément C (2010) Trehalose and plant stress responses: friend or foe? Trends Plant Sci 15(7):409–417

    Article  CAS  PubMed  Google Scholar 

  • Garcia AB, Engler J, Iyer S, Gerats T, Van Montagu M, Caplan AB (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 115:159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Chandel S (2011) The effect of salinity on nitrogen fixation and trehalose metabolism in Mycorrhizal Cajanus cajan (L.) Mill sp. plants. J Plant Growth Regul 30:490–503

    Article  CAS  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Dinakar C, Benina M, Toneva V, Bartels D (2012) Molecular mechanisms of desiccation tolerance in resurrection plants. Cell Mol Life Sci 69(19):3175–3186

    Article  CAS  PubMed  Google Scholar 

  • Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Mueller-Roeber B (2014) Natural products from resurrection plants: potential for medical applications. Biotechnol Adv 32(6):1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Goddijn OJ, Verwoerd TC, Voogd E, Krutwagen RW, De Graff PTHM, Poels J, Pen J (1997) Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiol 113(1):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han SE, Park SR, Kwon HB, Yi BY, Lee GB, Byun MO (2005) Genetic engineering of drought-resistant tobacco plants by introducing the trehalose phosphorylase (TP) gene from Pleurotussajor-caju. Plant Cell Tissue Organ Cult 82(2):151–158

    Article  CAS  Google Scholar 

  • Henry C, Bledsoe SW, Griffiths CA, Kollman A, Paul MJ, Sakr S, Lagrimini LM (2015) Differential role for trehalose metabolism in salt-stressed maize. Plant Physiol 169:1072–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HA, Abdellatif YM (2016) Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann Agric Sci 61(2):267–274

    Article  Google Scholar 

  • Ilhan S, Ozdemir F, Bor M (2015) Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovate Desf. Plant Biol 17(2):402–407

    Article  CAS  PubMed  Google Scholar 

  • Iordachescu M, Imai R (2008) Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol 50:1223–1229

    Article  CAS  PubMed  Google Scholar 

  • Iordachescu M, Imai R (2011) Trehalose and abiotic stress in biological systems. Abiotic stress in plants: mechanisms and adaptations. In Tech Croatia, pp 215–234

  • Iturriaga G, Suárez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10(9):3793–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain NK, Roy I (2009) Effect of trehalose on protein structure. Protein Sci 18(1):24–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain NK, Roy I (2010) Trehalose and protein stability. Curr Prot Protein Sci 59:4–9

    Google Scholar 

  • John R, Anjum NA, Sopory SK, Akram NA, Ashraf M (2016) Some key physiological and molecular processes of cold acclimation: an overview. Biol Plant 60(4):603–618

    Article  CAS  Google Scholar 

  • John R, Raja V, Ahmad M, Jan N, Majeed U, Ahmad S, Yaqoob U, Kaul T (2017) Trehalose: metabolism and role in stress signaling in plants. Stress Signaling Plants Genom Proteom Perspect 2:261–275

    Google Scholar 

  • Kaasen I, McDougall J, Strom AR (1994) Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli. Gene 145:9–15

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, De Leon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sci USA 99:9727–9732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW, Zhao W, Schiller KC, Gatzke N, Sung DY, Guy CL (2004) Exploring the temperature stress metabolome of Arabidopsis. Plant Physiol 136(4):4159–4168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karim S, Aronsson H, Ericson H, Pirhonen M, Leyman B, Welin B, Ma¨ntyla¨ E, Palva T, Dijck PV, Holmström KO (2007) Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Mol Biol 64:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kempa S, Krasensky J, Dal Santo S, Kopka J, Jonak CA (2008) Central role of abscisic acid in stress-regulated carbohydrate metabolism. PLoS One 3:e3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosmas SA, Argyrokastritis A, Loukas MG, Eliopoulos E, Tsakas S, Kaltsikes PJ (2006) Isolation and characterization of drought-related trehalose 6-phosphate-synthase gene from cultivated cotton (Gossypium hirsutum L.). Planta 223(2):329–339

    Article  CAS  PubMed  Google Scholar 

  • Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxid Redox Signal 21(9):1289–1304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretovich VL (1980) Biochemistry of plants. Vysshaya Shkola Press, Moscow

    Google Scholar 

  • Krumova K, Cosa G (2016) Overview of reactive oxygen species. In: Nonell S, Flors C (eds) Singlet oxygen: applications in biosciences and nanosciences, vol l. Royal Society of Chemistry, pp 1–21

  • Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Luo LJ, Zhu LP (2014) Involvement of trehalose in hydrogen sulfide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Bot Stud 55(1):1–9

    Article  CAS  Google Scholar 

  • López M, Tejera NA, Iribarne C, Lluch C, Herrera-Cervera JA (2008) Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant 134(4):575–582

    Article  CAS  PubMed  Google Scholar 

  • López-Gómez M, Lluch C (2012) Trehalose and abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 253–265

    Chapter  Google Scholar 

  • Luo Y, Li WM, Wang W (2008) Trehalose: protector of antioxidant enzymes or reactive oxygen species scavenger under heat stress? Environ Exp Bot 63(1):378–384

    Article  CAS  Google Scholar 

  • Luo Y, Li F, Wang GP, Yang XH, Wang W (2010) Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol Plant 54:495–501

    Article  CAS  Google Scholar 

  • Luyckx J, Baudonin C (2011) Trehalose: an intriguing disaccharide with potential for medical application in ophthalmology. Clin Ophtalmol 5:577–581

    CAS  Google Scholar 

  • Luzardo MDC, Amalfa F, Nunez AM, Diaz S, De Lopez AB, Disalvo EA (2000) Effect of trehalose and sucrose on the hydration and dipole potential of lipid bilayers. Biophys J 78(5):2452–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342

    Article  CAS  Google Scholar 

  • Maruta K, Hattori K, Nakada T, Kubota M, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. Biosci Biotechnol Biochem 60:717–720

    Article  CAS  PubMed  Google Scholar 

  • Mensonides FIC, Brul S, Klis FM, Hellingwerf KJ, Joost M (2005) Teixeira de mattos1 activation of the protein kinase C1 pathway upon continuous heat stress in Saccharomyces cerevisiae is triggered by an intracellular increase in osmolarity due to trehalose accumulation. Appl Environ Microbiol 71(8):4531–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489

    Article  CAS  PubMed  Google Scholar 

  • Miranda JA, Avonce N, Suarez R, Thevelein JM, Van Dijck P, Iturriaga GA (2007) Bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta 226:1411–1421

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M, Tran LSP (2015a) Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep 5:1–16

    Google Scholar 

  • Mostofa MG, Hossain MA, Fujita M (2015b) Trehalose pretreatment induces salt tolerance in rice (Oryza sativa L.) seedlings: oxidative damage and co-induction of antioxidant defense and glyoxalase systems. Protoplasma 252(2):461–475

    Article  CAS  PubMed  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112:1–9

    Article  Google Scholar 

  • Nakakuki T (2005) Present status and future prospects of functional oligosaccharide development in Japan. J Appl Glycosci 52:267–271

    Article  CAS  Google Scholar 

  • Nery DDCM, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio ECA (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780(12):1408–1411

    Article  CAS  Google Scholar 

  • Nezhadahmadi A, Prodhan Z, Faruq G (2013) Drought tolerance in wheat. Sci World J 13:1–12

    Article  CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Article  CAS  PubMed  Google Scholar 

  • Ohtake S, Wang YJ (2011) Trehalose: current use and future applications. J Pharm Sci 100(6):2020–2053

    Article  CAS  PubMed  Google Scholar 

  • Ohtake S, Schebor C, de Pablo JJ (2006) Effects of trehalose on the phase behavior of DPPC–cholesterol unilamellar vesicles. Biochim Biophys Acta 1758(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Ohtake S, Martin R, Saxena A, Pham B, Chiueh G, Osorino M, Kopecko D, Xu D, Lechuga-Ballesteros D, Truong-Le V (2011) Room temperature stabilization of oral, live attenuated Salmonella enterica serova Typhi-vectored vaccines. Vaccine 29:2761–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul S, Paul S (2014) Trehalose induced modifications in the solvation pattern of N-methylacetamide. J Phys Chem B 118(4):1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  CAS  PubMed  Google Scholar 

  • Petitjean M, Teste MA, Francois JM et al (2015) Yeast tolerance to various stresses relies on the trehalose-6P synthase (Tps1) protein, not on trehalose. J Biol Chem 290:16177–16190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6:89–96

    Article  Google Scholar 

  • Rezvani S, Shariati S (2009) Analysis of trehalose in Arabidopsis thaliana L. in addition, helpful at all stages of HD. Rasayan J Chem 2:267–270

    CAS  Google Scholar 

  • Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M (2002) Trehalose: a review of properties, history of use and human tolerance. Food Chem Toxicol 40:871–898

    Article  CAS  PubMed  Google Scholar 

  • Sadak MS (2016) Mitigation of drought stress on fenugreek plant by foliar application of trehalose. Int J Chemtech Res 9(2):147–155

    CAS  Google Scholar 

  • Sah SK, Kaur G, Wani SH (2016) Metabolic engineering of compatible solute trehalose for abiotic stress tolerance in plants. In: Iqbal N, Nazar R, A. Khan N (eds) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, New Delhi, pp 83–96

    Chapter  Google Scholar 

  • Sakamoto K, Arima TH, Iwashita K, Yamada O, Gomi K, Akita O (2008) Aspergillus oryza eat fB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet Biol 45:922–932

    Article  CAS  PubMed  Google Scholar 

  • Sakurai M, Furuki T, Akao KI, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008a) Vitrification is essential for an hydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci 105(13):5093–5098

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakurai M, Furuki T, Akao KI, Tanaka D, Nakahara Y, Kikawada T (2008b) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci USA 105(13):5093–5098

    Article  PubMed  PubMed Central  Google Scholar 

  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  PubMed  Google Scholar 

  • Schluepmann H, Paul M (2009) Trehalose metabolites in Arabidopsis: elusive, active and central. Arabidopsis Book 7:e0122

    Article  PubMed  PubMed Central  Google Scholar 

  • Schluepmann H, Pellny TK, van Dijken AJH, Smeekens SC, Paul MJ (2003) Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proc Natl Acad Sci 100:6849–6854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiol 135:879–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz S, Van Dijck P (2017) Trehalose metabolism: a sweet spot for Burkholderia pseudomallei virulence. Virulence 8(1):5–7

    Article  PubMed  Google Scholar 

  • Serrano R, Culiañz-Maciá FA, Moreno V (1998) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hort 78(1–4):261–269

    Article  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hort 185:68–75

    Article  CAS  Google Scholar 

  • Shahbaz M, Abid A, Masood A, Waraich EA (2017) Foliar-applied trehalose modulates growth, mineral nutrition, photosynthetic ability, and oxidative defense system of rice (Oryza sativa L.) under saline stress. J Plant Nutr 40(4):584–599

    Article  CAS  Google Scholar 

  • Sols A, Gancedo C, Delafuente G (1971) Energy yielding metabolism in yeasts. In: Rose C, Harrison JSL (eds) The yeasts. Academic, London, pp 271–307

    Google Scholar 

  • Suzuki N, Bajad S, Shuman J, Shulaev V, Mittler R (2008) The transcriptional co-activator MBF1c is a key regulator of thermo tolerance in Arabidopsis thaliana. J Biol Chem 283:9269–9275

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2003) Plant physiology, 3rd edn. Panima Publishing Corporation, New Delhi, pp 1–690

    Google Scholar 

  • Tapia H, Koshland DE (2014) Trehalose is a versatile and long-lived chaperone for desiccation tolerance. Curr Biol 24:2758–2766

    Article  CAS  PubMed  Google Scholar 

  • Tapia H, Young L, Fox D, Bertozzi CR, Koshland D (2015) Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc Natl Acad Sci 112(19):6122–6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theerakulpisut P, Gunnula W (2012) Exogenous sorbitol and trehalose mitigated salt stress damage in salt sensitive but not salt-tolerant rice seedlings. Asian J Crop Sci 4:165–170

    Article  Google Scholar 

  • Theerakulpisut P, Phongngarm S (2013) Alleviation of adverse effects of salt stress on rice seedlings by exogenous trehalose. Asian J Crop Sci 5(4):405–415

    Article  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties. Plant Sci 165:1411–1418

    Article  CAS  Google Scholar 

  • Vogel G, Aeschbacher RA, Müller J, Boller T, Wiemken A (1998) Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J 13(5):673–683

    Article  CAS  PubMed  Google Scholar 

  • Walmagh M, Zhao R, Desmet Z (2015) Trehalose analogues: latest insights in properties and biocatalytic production. Int J Mol Sci 16:13729–13745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZL, Lu JD, Feng MG (2012) Primary roles of two dehydrogenases in the mannitol metabolism and multi stress tolerance of entomopathogenic fungus Beauveria bassiana. Environ Microbiol 14:2139–2150

    Article  CAS  PubMed  Google Scholar 

  • Waraich EA, Ahmad R, Halim A, Aziz T (2012) Alleviation of temperature stress by nutrient management in crop plants: a review. J Soil Sci Plant Nutr 12(2):221–244

    Article  Google Scholar 

  • Wen X, Wang S, Duman JG, Arifin JF, Juwita V, Goddard WA, Rios A, Liu F, Kim SK, Abrol R, DeVries AL (2016) Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc Natl Acad Sci 113(24):6683–6688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiggers HAL (1832) Untersuchungüber das Mutterkorn, Secalecornutum. Ann. Pharm 1(2):129–182

    Article  Google Scholar 

  • Wingle A, Fritzius T, Wiemken A, Boller T, Aeschbacher R (2000) Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiol 124:105–114

    Article  Google Scholar 

  • Wingler A (2002) The function of trehalose biosynthesis in plants. Phytochemistry 60:437–440

    Article  CAS  PubMed  Google Scholar 

  • Yadav P, Kumar S, Reddy K, Yadav T, Murthy I (2014) Oxidative stress and antioxidant defense system in plants, vol 2. Plant Biotechnology, Studium Press LLC, Houston, pp 261–281

    Google Scholar 

  • Yang L, Zhao X, Zhu H, Paul M, Zu Y, Tang Z (2014) Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings. Front Plant Sci 5:1–11

    Article  Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

  • Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G (1999) A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeasttps1 mutant. Plant Physiol 119(4):1473–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Xu Y, Sun Y, Mei W, Ouyang J (2015) Biocatalytic production of trehalose from maltose by using whole cells of permeabilized recombinant Escherichia coli. PloS One, 10(10):e0140477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Y, Ren G, Yue G, Li Z, Qu X, Hou G, Zhu Y, Zhang J (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26(12):2137–2147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research work is a part of Ph.D. thesis of Miss. Firdos Kosar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nudrat Aisha Akram.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosar, F., Akram, N.A., Sadiq, M. et al. Trehalose: A Key Organic Osmolyte Effectively Involved in Plant Abiotic Stress Tolerance. J Plant Growth Regul 38, 606–618 (2019). https://doi.org/10.1007/s00344-018-9876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9876-x

Keywords

Navigation