Skip to main content

Advertisement

Log in

Pretreatment with Proline or an Organic Bio-stimulant Induces Salt Tolerance in Wheat Plants by Improving Antioxidant Redox State and Enzymatic Activities and Reducing the Oxidative Stress

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

In this study, the effects of seed soaking in proline (12 mM) or Moringa oleifera leaf extract (MLE; 6%) on the biomass, yield, and the antioxidant systems were investigated using wheat plants grown under NaCl stress (120 mM). Shoot fresh and dry weights, yield, K+ ion accumulation, K+/Na+ ration, soluble protein, photosynthetic pigment (that is, carotenoids and chlorophylls) contents, and efficiency (that is, Fv/Fm and performance index; PI) of wheat were decreased at salt-stress treatment. Salinity increased the activity of superoxide dismutase, ascorbate and glutathione peroxidases, and the content of malondialdehyde, H2O2, and Na+ and Cl contents in leaf compared to control. Additionally, increased magnitudes of proline, soluble sugar, soluble protein, ascorbate, glutathione contents were more pronounced under 120 mM NaCl than those under control. Proline or MLE ameliorated the inhibitory effects of NaCl stress to varying degrees, ensuring significant amelioration on biomass, yield, osmoprotectants and antioxidant systems. In comparison to proline, seed soaking with MLE was more effective in improving wheat growth and yield by mitigating the inhibitory effects of salinity stress. The presented results indicate that seed soaking with 6% MLE can contribute to protecting wheat seedlings/plants against NaCl stress by mitigating the oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abogadallah GM (2010) Antioxidative defense under salt stress. Plant Signal Behav 5:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agami RA (2004) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58:341–347. https://doi.org/10.1007/s10535-014-0392-y

    Article  CAS  Google Scholar 

  • Ali Q, Daud MK, Haider MZ, Ali S, Rizwan M, Aslam N, Noman A, Iqbal N, Shahzad F, Deeba F, Ali I, Zhu SJ (2017) Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem 119:50–58

    Article  CAS  PubMed  Google Scholar 

  • Amini F, Ehsanpour AA (2005) Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. Am J Biochem Biotechnol 1(4):212–216

    CAS  Google Scholar 

  • Anjum SA, Farooq M, Xie X, Liu XJ, Ijaz MF (2012) Antioxidant defense system and proline accumulation enables hot pepper to perform better under drought. Sci Hortic 140:66–73

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R (2017) The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol 8:1–19. https://doi.org/10.3389/fphys.2017.00509

    Article  Google Scholar 

  • Azevedo-Neto AD, Prisco JT, Enéas-Filho J, Lacerda CF, Silva JV, Costa PHA, Gomes-Filho E (2004) Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol 16:31–38. https://doi.org/10.1590/S1677-04202004000100005

    Article  Google Scholar 

  • Bano S, Ashraf M, Akram NA (2014) Salt stress regulates enzymatic and nonenzymatic antioxidative defense system in the edible part of carrot (Daucus carota L.). J Plant Interact 9(1):324–329

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    Article  CAS  PubMed  Google Scholar 

  • Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58:4216–4222. https://doi.org/10.1021/jf9041479

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Jiang JG (2010) Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ Rev 18:309–319. https://doi.org/10.1139/A10-014

    Article  CAS  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA et al (2007) Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725. https://doi.org/10.1104/pp.107.110262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ching LS, Mohamed S (2001) Alpha-tocopherol content in 62 edible tropical plants. J Agric Food Chem 49(6):3101–3105

    Article  CAS  PubMed  Google Scholar 

  • Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90(5):856–867

    Article  CAS  PubMed  Google Scholar 

  • Clark AJ, Landolt W, Bucher JB, Strasser RJ (2000) Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. Environ Pollut 109(3):501–507

    Article  CAS  PubMed  Google Scholar 

  • de Freitas PAF, de Souza Miranda R, Marques EC, Prisco JT, Gomes-Filho E (2018) Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis. J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9787-x

    Article  Google Scholar 

  • Desoky EM, Merwad AM, Rady MM (2018) Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun Soil Sci Plant Anal 49(8):967–983

    Article  CAS  Google Scholar 

  • Dubey RS, Rani M (1989) Influence of NaCl salinity on growth and metabolic statusof protein and amino acids in rice seedlings. J Agron Crop Sci 162:97–106

    Article  CAS  Google Scholar 

  • Elkoca E (2007) Priming: pre-treatment before sowing. Ataturk Univ Agric Fac J 38:113–120

    Google Scholar 

  • Elzaawely AA, Ahmed ME, Maswada HF, Xuan TD (2017) Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch Agron Soil Sci 63(5):687–699

    Article  CAS  Google Scholar 

  • Farhangi-Abriz S, Torabian S (2017) Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol Environ Saf 137:64–70

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Basra SMA, Rehman H, Saleem BA (2008) Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J Agron Crop Sci 194:55–60

    Article  Google Scholar 

  • Foidl N, Makkar HPS, Becker K (2001) The potential of Moringa oleifera for agricultural and industrial uses. In: Proceedings of the International Workshop “What development potential for Moringa products?” pp 47–67

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18. https://doi.org/10.1104/pp.110.167569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaines TP, Parker MB, Gascho GJ (1984) Automated determination of chlorides in soil and plant tissue by sodium nitrate extraction 1. Agron J 76(3):371–374

    Article  CAS  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106(1):207–212

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Havir EA, McHale NA (1987) Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol 84:450–455. https://doi.org/10.1104/pp.84.2.450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Baltimore

    Google Scholar 

  • Howladar SM (2014) A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicol Environ Saf 100:69–75

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Bie Z, Liu Z, Zhen A, Wang W (2009) Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. Soil Sci Plant Nutr 55:698–704. https://doi.org/10.1111/j.1747-0765.2009.00412.x

    Article  CAS  Google Scholar 

  • Irigoyen JJ, Einerich DW, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84(1):55–60

    Article  CAS  Google Scholar 

  • Kampfenkel K, Van Montagu M (1995) Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal Biochem 225:165–167

    Article  CAS  PubMed  Google Scholar 

  • Konings EJ, Roomans HH, Beljaars PR (1996) Liquid chromatographic determination of tocopherols and tocotrienols in margarine, infant foods, and vegetables. J AOAC Int 79(4):902–906

    CAS  PubMed  Google Scholar 

  • Kosovà K, Pràšil IT, Vitàmvàs P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789. https://doi.org/10.3390/ijms14046757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusvuran S, Dasgan HY, Abak K (2013) Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. Sci World J. https://doi.org/10.1155/2013/253414

    Article  Google Scholar 

  • Lachica M, Aguilar A, Yanez J (1973) Analisis foliar: Métodos Utilizados enla estaciln experimental del zaidin. Anales Edafologia Agrobiologia 32:1033–1047

    CAS  Google Scholar 

  • Lavrich RJ, Hays MD (2007) Validation studies of thermal extraction-GC/MS applied to source emissions aerosols. 1. Semivolatile analyte-nonvolatile matrix interactions. Anal Chem 79:3635–3645

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC (2003) Effect of far-infrared radiation on the antioxidant activity of rice hulls. J Agric Food Chem 51:4400–4403

    Article  CAS  PubMed  Google Scholar 

  • Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1(9):1371–1391

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Nieves-Cordones M, Lopez-Delacalle M, Rodenas R, Mestre TC, Garcia-Sanchez F, Rubio F, Nortes PA, Mittler R, Rivero RM (2018) Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules 23:535

    Article  PubMed Central  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Honig A, Stein H (2009) Unraveling ∆1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 284:26482–26492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morsy MR, Jouve L, Hausman JF, Hoffmann L, Stewart JM (2007) Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J Plant Physiol 164:157–167

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Noctor G, Reichheld JP, Foyer CH (2017) ROS-related redox regulation and signaling in plants. Semin Cell Dev Biol https://doi.org/10.1016/j.semcdb.2017.07.013

    Article  PubMed  Google Scholar 

  • Nouman W, Siddiqui MT, Basra SMA, Afzal I, Rehman HU (2012) Enhancement of emergence potential and stand establishment of Moringa oleifera Lam. by seed priming. Turk J Agric For 36(2):227–235

    Google Scholar 

  • Nounjan N, Theerakulpisut P (2012) Effects of exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant Soil Environ 2012:309–315. https://doi.org/10.1016/j.jplph.2012.01.004

    Article  CAS  Google Scholar 

  • Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604. https://doi.org/10.1016/j.jplph.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  • Rady MM, Mohamed GF (2015) Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci Hortic 193:105–113

    Article  CAS  Google Scholar 

  • Rady MM, Varma B, Howladar SM (2013) Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci Hortic 162:63–70

    Article  CAS  Google Scholar 

  • Rady MM, Mohamed GF, Abdalla AM, Ahmed YH (2015) Integrated application of salicylic acid and Moringa oleifera leaf extract alleviates the salt-induced adverse effects in common bean plants. Int J Agric Technol 11(7):1595–1614

    CAS  Google Scholar 

  • Ranjbarfordoei A, Samson R, Van Damme P (2006) Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44(4):513–522

    Article  CAS  Google Scholar 

  • Rehman H, Nawaz Q, Basra SMA, Afzal I, Yasmeen A (2014) Seed priming influence on early crop growth, phenological development and yield performance of linola (Linum usitatissimum L.). J Integr Agric 13(5):990–996

    Article  CAS  Google Scholar 

  • Rezende RALS, Rodrigues FA, Soares JDR, Silveira HRDO, Pasqual M, Dias GDMG (2018) Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Ciência Rural. https://doi.org/10.1590/0103-8478cr20170176

    Article  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. Salinity: environment-plant-molecules. Springer, Dordrecht, pp 181–204

    Google Scholar 

  • Saadia M, Jamil A, Akram NA, Ashraf M (2012) A study of proline metabolism in canola (Brassica napus L.) seedlings under salt stress. Molecules 17:5803–5815. https://doi.org/10.3390/molecules17055803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safi-naz S, Rady MM (2015) Moringa oleifera leaf extract improves growth, physio-chemical attributes, antioxidant defence system and yields of salt-stressed Phaseolus vulgaris L. plants. Int J ChemTech Res 8(11):120–134

    Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163(5):1037–1046

    Article  CAS  Google Scholar 

  • Sakuraba H, Takamatsu Y, Satomura T, Kawakami R (2001) Purification, characterization, and application of a novel dye-linked l-proline dehydrogenase from a hyperthermophilic archaeon, Thermococcus profundus. Appl Environ Microb 67:1470–1475. https://doi.org/10.1128/AEM.67.4.1470

    Article  CAS  Google Scholar 

  • Semida WM, Rady MM (2014) Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci Hortic 168:210–217

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. https://doi.org/10.1155/2012/217037

    Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Siringam K, Juntawong N, Cha-Um S, Kirdmanee C (2011) Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under isoosmotic conditions. Afr J Biotechnol 10:1340–1346

    CAS  Google Scholar 

  • Sobahan MA, Akter N, Ohno M, Okuma E, Hirai Y, Mori IC, Nakamura Y, Murata Y (2012) Effects of exogenous proline and glycinebetaine on the salt tolerance of rice cultivars. Biosci Biotechnol Biochem 76:1568–1570. https://doi.org/10.1271/bbb.120233

    Article  CAS  PubMed  Google Scholar 

  • Soliman AS, Shanan NT (2017) The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J Appl Hortic 19(1):35–45

    Google Scholar 

  • Srinieng K, Saisavoey T, Karnchanatat A (2015) Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pak J Bot 47(1):1–10

    CAS  Google Scholar 

  • Sundstrom FJ, Reader RB, Edwards RL (1987) Effect of seed treatment and planting method on Tabasco pepper. J Am Soc Hortic Sci 112:641–644

    CAS  Google Scholar 

  • Taha RS (2016) Improving salt tolerance of Helianthus annuus (L.) plants by Moringa oleifera leaf extract. Egypt J Agron 38(1):117–140

    Article  Google Scholar 

  • Tamimi SM (2016) Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress. J Biosci Agric Res 11(01):906–922

    Article  Google Scholar 

  • Teh CY, Noor CT, Shaharuddin A, Maziah CH (2016) Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. Acta Physiol Plant 38:10. https://doi.org/10.1007/s11738-016-2163-1

    Article  CAS  Google Scholar 

  • Valero E, Marcià H, De la Fuente IM, Henandez J-A, Gonzàles-Sànchez M-I, Garcia-Carmona F (2016) Modeling the ascorbateglutathione cycle in chloroplasts under light/dark conditions. BMC Syst Biol 10:11. https://doi.org/10.1186/s12918-015-0239-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liu Y, Dong K, Dong J, Kang J, Yang Q, Sun Y (2011) The effect of NaCl on proline metabolism in Saussurea amara seedlings. Afr J Biotechnol 10(15):2886–2893

    Article  CAS  Google Scholar 

  • Wu GQ, Feng RJ, Li SL, Du YY (2017) Exogenous application of proline alleviates salt-induced toxicity in sainfoin seedlings. J Anim Plant Sci 27:246–251. https://doi.org/10.1080/14620316.2013.11512989

    Article  CAS  Google Scholar 

  • Yan Z, Guo S, Shu S, Sun J, Tezuka T (2011) Effects of proline on photosynthesis, root reactive oxygen species (ROS) metabolism in two melon cultivars (Cucumis melo L.) under NaCl stress. Afr J Biotechnol 10:18381–18390. https://doi.org/10.5897/AJB11.1073

    Article  CAS  Google Scholar 

  • Yasmeen A (2011) Exploring the potential of moringa (Moringa oleifera) leaf extract as natural plant growth enhancer. Dissertation, University of Faisalabad

  • Yasmeen A, Basra SMA, Ahmad R, Wahid A (2012) Performance of late sown wheat in response to foliar application of Moringa oleifera Lam. leaf extract. Chil J Agric Res 72(1):92

    Article  Google Scholar 

  • Yemm EW, Cocking EC, Ricketts RE (1955) The determination of amino-acids with ninhydrin. Analyst 80(948):209–214

    Article  CAS  Google Scholar 

  • Zhou Y, Wen Z, Zhang J, Chen X, Cui J, Xu W, Liu HY (2017) Exogenous glutathione alleviates salt-induced oxidative stress in tomato seedlings by regulating glutathione metabolism, redox status, and the antioxidant system. Sci Hortic 220:90–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MMR and HFA. Performed the experiments: AK, HFA, YA, SK, and MMR. Analyzed the data: AK, HFA, and YA. Contributed reagents/materials/analysis tools: HFA and SK. Wrote the paper: AK and SK. Revised the paper: MMR, HFA, and YA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mostafa M. Rady.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rady, M.M., Kuşvuran, A., Alharby, H.F. et al. Pretreatment with Proline or an Organic Bio-stimulant Induces Salt Tolerance in Wheat Plants by Improving Antioxidant Redox State and Enzymatic Activities and Reducing the Oxidative Stress. J Plant Growth Regul 38, 449–462 (2019). https://doi.org/10.1007/s00344-018-9860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9860-5

Keywords

Navigation