Skip to main content
Log in

Identification and Characterization of ATP/ADP Isopentenyltransferases (ATP/ADP PpIPTs) Genes in Peach

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

ATP/ADP isopentenyltransferase (IPTs) genes encode key enzymes involved in cytokinin synthesis. In this study, the functions of ATP/ADP PpIPTs in peach were investigated. According to the genome sequence, we have found and verified that there are four members of this gene family in peach, namely, PpIPT1, PpIPT3, PpIPT5, and PpIPT7. Overexpression of each of these genes in Arabidopsis resulted in increased levels of cytokinins in the transgenic plants, confirming their roles in cytokinin synthesis. Numerous altered phenotypes were observed in the transgenic plants, including vigorous growth and enhanced salt resistance. ATP/ADP PpIPTs were expressed in tissues throughout the plant, but the expression patterns differed between the genes. Only PpIPT3 was upregulated within 2 h after the application of nitrate to N-deprived peach seedlings, and the increase was resistant to pre-treatment of a specific nitrate metabolism inhibitor. Results showed that ATP/ADP PpIPT expression levels decreased significantly in pulp within 2 weeks after flowering and remained low. However, pulp cytokinin levels were quite high during this time. Only PpIPT5 in seed increased significantly within 2 weeks after flowering, which was consistent with cytokinin levels during early fruit development, suggesting that PpIPT5 in seed is the key gene for cytokinin biosynthesis during early fruit development. ATP/ADP PpIPT expression also increased significantly during later fruit development in seed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe I, Tanaka H, Abe T, Noguchi H (2007) Enzymatic formation of unnatural cytokinin analogs by adenylate isopentenyltransferase from mulberry. Biochem Biophys Res Commun 355:795–800

    Article  CAS  PubMed  Google Scholar 

  • Ando S, Asano T, Tsushima S, Kamchi S, Hagio T, Tabei Y (2005) Changes in gene expression of putative isopentenyltransferase during clubroot development in Chinese cabbage (Brassica rapa L.). Physiol Mol Plant Pathol 67:59–67

    Article  CAS  Google Scholar 

  • Arnau JA, Tadeo FR, Guerri J, Primo-Millo E (1999) Cytokinins in peach: endogenous levels during early fruit development. Plant Physiol Biochem 37(10):741–750

    Article  CAS  Google Scholar 

  • Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  Google Scholar 

  • Atkins CA, Pigeaire A (1993) Application of cytokinins to flowers to increase pod set in Lupinus angustifolius. Aust J Agr Res 44:1799–1819

    Article  CAS  Google Scholar 

  • Blackwell JR, Horgan R (1994) Cytokinin biosynthesis by extracts of Zea mays. Phytochemistry 35:339–342

    Article  CAS  Google Scholar 

  • Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. Plant Cell Physiol 49(4):641–652

    Article  CAS  PubMed  Google Scholar 

  • Castaings L, Marchive C, Meyer C, Krapp A (2011) Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. J Exp Bot 62:1391–1397

    Article  CAS  PubMed  Google Scholar 

  • Crane JC (1964) Growth substances in fruit setting and development. Annu Rev Plant Physiol 15:303–326

    Article  CAS  Google Scholar 

  • Dobrev PI, Kaminek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Dragovoz IV, Kots SY, Chekhun TI, Yavorskaya VK, Volkogon NV (2002) Complex growth regulator increases alfalfa seed production. Russ J Plant Physiol 49:823–827

    Article  CAS  Google Scholar 

  • Dyer DJ, Carlson DR, Cotterman CD, Sikorski JA, Ditson SL (1987) Soybean pod set enhancement with synthetic cytokinin analogs. Plant Physiol 84:240–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emery RJN, Ma Q, Atkins CA (2000) The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol 123:1593–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  CAS  PubMed  Google Scholar 

  • Golovko A, Sitbon F, Tillberg E, Nicander B (2002) Identification of a tRNA isopentenyl-transferase gene from arabidopsis thaliana. Plant Mol Biol 49(2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Haberer G, Kieber JJ (2002) Cytokinins. New insights into a classic phytohormone. Plant Physiol 128(2):354–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez Miñana FM, Primo Millo E, Primo Millo J (1989) Endogenous cytokinins in developing fruits of seeded and seedless Citrus cultivars. J Exp Bot 40(10):1127–1134

    Article  Google Scholar 

  • Immanen J, Nieminen K, Silva HD, Rojas FR, Meisel LA, Silva H, Albert VA, Hvidsten TR, Helariutta Y (2013) Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genom 14:885

    Article  CAS  Google Scholar 

  • Jameson PE, Song J (2016) Cytokinin: a key driver of seed yield. J Exp Bot 67(3):593

    Article  CAS  PubMed  Google Scholar 

  • Kakimoto T (2001) Identification of plant Cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant Cell Physiol 42:677–685

    Article  CAS  PubMed  Google Scholar 

  • Kasahara H, Takei K, Ueda N, Hishiyama S, Yamaya T, Kamiya Y, Yamaguchi S, Sakakibara H (2004) Distinct isoprenoid origins of cis- and trans-zeatin biosyntheses in Arabidopsis. J Biol Chem 279:14049–14054

    Article  CAS  PubMed  Google Scholar 

  • Le DT, Nishiyama R, Watanabe Y et al (2012) Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 7(8):e42411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang SH et al (2011) Auxin inhibits the outgrowth of tiller buds in rice (Oryza sativa L.) by downregulating OsIPT expression and cytokinin biosynthesis in nodes. Aust J Crop Sci 5:169–174

    CAS  Google Scholar 

  • Liu YD, Yin ZJ, Yu JW et al (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246

    Article  CAS  Google Scholar 

  • McCab MS, Garratt LC, Schepers F et al (2001) Effects of P-SAG12-IPT gene expression on development and senescence in transgenic lettuce. Plant Physiol 127:505–516

    Article  Google Scholar 

  • Merewitz EB, Gianfagna T, Huang et al (2011) Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot 62:383–395

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Kitano MM, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki K, Tarkowski P, Kitano MM, Kato T et al (2006) Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc Natl Acad Sci USA 103:44

    Article  CAS  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T et al (2010) Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 17(5):303–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  CAS  PubMed  Google Scholar 

  • Nagel L, Brewster R, Riedell WE, Reese RN (2001) Cytokinin regulation of flower and pod set in soybeans (Glycine max (L.) Merr.). Ann Bot 88:27–31

    Article  CAS  Google Scholar 

  • Nitsch JP (1970) Hormonal factors in growth and development. Biochem Fruits Prod 2:427–472

    Google Scholar 

  • Nobusada TK, Makita N, Kojima M, Sakakibara H (2013) Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal. Plant Cell Physiol 54:1881–1893

    Article  CAS  Google Scholar 

  • Pace J, McDermott EE (1952) Methionine sulphoximine and some enzyme systems involving glutamine. Nature 169(4297):415–416

    Article  CAS  PubMed  Google Scholar 

  • Powell AF, Paleczny AR, Olechowski H, Emery RJN (2013) Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol Biochem 64:33–40

    Article  CAS  PubMed  Google Scholar 

  • Qiu WM, Liu MY, Qiao GR et al (2012) An isopentyl transferase gene driven by the stress-inducible rd29a promoter improves salinity stress tolerance in transgenic tobacco. Plant Mol Biol Rep 30:519–528

    Article  CAS  Google Scholar 

  • Ren XQ, Xu K, Li H et al (2013) Expression analysis of the adenylate-isopentenyl transferase(a-ipt) genes in apple(malus × domestica borkh.). J China Agric Univ 18(6):120–125

    CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    Article  PubMed  Google Scholar 

  • Sakakibara H (2003) Nitrate-specific and cytokinin-mediated nitrogen signaling pathways in plants. J Plant Res 116:253–257

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation[J]. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Plant Sci 11:440–448

    Article  CAS  Google Scholar 

  • Sakamoto T, Sakakibara H, Kojima M, Yamamoto Y, Naagasaki H, Inukai Y, Sato Y, Matsuoka M (2006) Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol 142:54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakano Y, Okada Y, Matsunaga A, Suwama T, Kaneko T, Ito K, Noguchi H, Abe I (2004) Molecular cloning, expression, and characterization of adenylate isopentyltransferase from hop (Humulus lupulus L.). Phytochemistry 65:2439–2446

    Article  CAS  PubMed  Google Scholar 

  • Samuelson ME, Larsson CM (1993) Nitrate regulation of zeatin riboside levels in barley roots: effects of inhibitors of N assimilation and comparison with ammonium. Plant Sci 93:77–84

    Article  CAS  Google Scholar 

  • Schäfer M, Brütting C, Mezacanales ID et al (2015) The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot 66(16):4873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smigocki AC, Owens LD (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85:5131–5135

    Article  CAS  PubMed  Google Scholar 

  • Stern RA, Shargal A, Flaishman MA (2003a) Thidiazuron increases fruit size of ‘Spadona’and ‘Coscia’ pear (Pyrus communis L.). J Hortic Sci Biotechnol 78:51–55

    Article  CAS  Google Scholar 

  • Stern RA, Ben-Arie R, Neria O, Flaishman M (2003b) CPPU and BA increase fruit size of ‘Royal Gala’ (Malus domestica) apple in a warm climate. J Hortic Sci Biotechnol 78:297–302

    Article  CAS  Google Scholar 

  • Takei K, Sakakibara H, Sugiyama T (2001a) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Sakakibara H, Taniguchi M, Sugiyama T (2001b) Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Plant Cell Physiol 42:85–93

    Article  CAS  PubMed  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  CAS  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao P, Liu X et al (2014) Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Ye CJ, Wu SW, Kong FN, Zhou CJ, Yang QK, Sun Y, Wang B (2006) Identification and characterization of an isopentenyl-transferase (IPT) gene in soybean(Glycine max L.). Plant Sci 170:542–550

    Article  CAS  Google Scholar 

  • Zhao Q, Dixon RA (2011) Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 16(4):227–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China Agriculture Research System; CARS-31-3-03; http://119.253.58.231/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-tian Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Mj., Wei, Qp., Peng, Ft. et al. Identification and Characterization of ATP/ADP Isopentenyltransferases (ATP/ADP PpIPTs) Genes in Peach. J Plant Growth Regul 38, 416–430 (2019). https://doi.org/10.1007/s00344-018-9851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-018-9851-6

Keywords

Navigation