Eyes of differing colors in Alvinocaris longirostris from deep-sea chemosynthetic ecosystems: genetic and molecular evidence of its formation mechanism

Abstract

Coloration is an important phenotypic trait for multiple adaptive functions. It is interesting to find white-eye (AW) and orange-eye (AO) phenotypes in the shrimp Alvinocaris longirostris inhabiting the deep-sea cold seep and hydrothermal vent areas of the northwestern Pacific. By comparative transcriptome analyses, 1 491 differentially expressed genes (DEGs) were identified between AW and AO. Among them, many DEGs were associated with immunity, antioxidation, and detoxification. Two significant enzyme encoding genes, xanthine dehydrogenase, and tryptophan oxidase involved in pigment biosynthesis pathways were up-regulated in AW and AO, respectively, which might be related to the differences of white and orange eye phenotypes. Moreover, single nucleotide polymorphism (SNP) calling detected that genotypes of 28 SNP distributing in 14 unigenes were completely different between AW and AO. Particularly, there were three and two non-synonymous mutations in immune genes crustin Pm5 and antimicrobial peptide, respectively. Results indicate that the difference in eye color is probably resulted from immune response to variable micro-environmental stressors encountered in the dispersal process of the shrimps, such as symbiotic microbes, pathogens, and toxic substances, and might be genetically fixed at last. The suggested pathway preliminarily explained the formation mechanism of different eye phenotypes in Alvinocaridid shrimps, providing a basis for further study on adaptive evolution of eyes in deep-sea chemosynthetic faunas.

This is a preview of subscription content, access via your institution.

References

  1. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell, 124(4): 783–801, https://doi.org/10.1016/j.cell.2006.02.015.

    Article  Google Scholar 

  2. Baglioni C. 1959. Genetic control of tryptophan peroxidase-oxidase in Drosophila melanogaster. Nature, 184(4692): 1 084–1 085, https://doi.org/10.1038/1841084a0.

    Article  Google Scholar 

  3. Baldwin W F. 1962. The effect of radiation dose rate on the production of eye color mutations in the chalcid Dahlbominus. Radiation Research, 17(2): 127–132, https://doi.org/10.2307/3571302.

    Article  Google Scholar 

  4. Besansky N J, Fahey G T. 1997. Utility of the white gene in estimating phylogenetic relationships among mosquitoes (Diptera: Culicidae). Molecular Biology and Evolution, 14(4): 442–454, https://doi.org/10.1093/oxfordjournals.molbev.a025780.

    Article  Google Scholar 

  5. Bettencourt R, Pinheiro M, Egas C, Gomes P, Afonso M, Shank T, Santos R S. 2010. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics, 11(1): 559, https://doi.org/10.1186/1471-2164-11-559

    Article  Google Scholar 

  6. Brown C, Hodgson A. 2001. The ecology of deep-sea hydrothermal vents. African Zoology, 36(1): 119–120, https://doi.org/10.1080/15627020.2001.11657128.

    Article  Google Scholar 

  7. Bulet P, Hetru C, Dimarcq J L, Hoffmann D. 1999. Antimicrobial peptides in insects: structure and function. Developmental and Comparative Immunology, 23(4–5): 329–344, https://doi.org/10.1016/S0145-305X(99)00015-4.

    Article  Google Scholar 

  8. Chang C C C, Slesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux P M, Parker J E, Karpiñska B, Karpiñski S. 2009. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiology, 150(2): 670–683, https://doi.org/10.1104/pp.109.135566.

    Article  Google Scholar 

  9. Charmantier-Daures M, Segonzac M. 1998. Organ of Bellonci and sinus gland in three Decapods from Atlantic hydrothermal vents: Rimicaris exoculata, Chorocaris chacei, and Segonzacia mesatlantica. Journal of Crustacean Biology, 18(2): 213–223, https://doi.org/10.2307/1549315.

    Article  Google Scholar 

  10. Couto M A, Harwig S S, Lehrer R I. 1993. Selective inhibition of microbial serine proteases by ENAP-2, an antimicrobial peptide from equine neutrophils. Infection and Immunity, 61(7): 2 991–2 994, https://doi.org/10.1128/IAI.61.7.2991-2994.1993.

    Article  Google Scholar 

  11. Croucher P J P, Brewer M S, Winchell C J, Oxford G S, Gillespie R G. 2013. De novo characterization of the gene-rich transcriptomes of two color-polymorphic spiders, Theridion grallator and T. californicum (Araneae: Theridiidae), with special reference to pigment genes. BMC Genomics, 14(1): 862, https://doi.org/10.1186/1471-2164-14-862.

    Article  Google Scholar 

  12. Du Z F, Zhang X, Xi S C, Li L F, Luan Z D, Lian C, Wang B, Yan J. 2018. In situ Raman spectroscopy study of synthetic gas hydrate formed by cold seep flow in the South China Sea. Journal of Asian Earth Sciences, 168: 197–206, https://doi.org/10.1016/j.jseaes.2018.02.003.

    Article  Google Scholar 

  13. Elofsson R, Hallberg E. 1973. Correlation of ultrastructure and chemical composition of crustacean chromatophore pigment. Journal of Ultrastructure Research, 44(5–6): 421–429, https://doi.org/10.1016/S0022-5320(73)90008-7.

    Article  Google Scholar 

  14. Epand R M, Vogel H J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochimica et Biophysica Acta, 1462(1–2): 11–28, https://doi.org/10.1016/s0005-2736(99)00198-4.

    Article  Google Scholar 

  15. Ewart G D, Howells A J. 1998. ABC transporters involved in transport of eye pigment precursors in Drosophila melanogaster. Methods in Enzymology, 292: 213–224, https://doi.org/10.1016/S0076-6879(98)92017-1.

    Article  Google Scholar 

  16. Fan R W, Xie J S, Bai J M, Wang H D, Tian X, Bai R, Jia X Y, Yang L, Song Y F, Herrid M, Gao W J, He X Y, Yao J B, Smith G W, Dong C S. 2013. Skin transcriptome profiles associated with coat color in sheep. BMC Genomics, 14(1): 389, https://doi.org/10.1186/1471-2164-14-389.

    Article  Google Scholar 

  17. Ferré J, Silva F J, Real M D, Ménsua J L. 1986. Pigment patterns in mutants affecting the biosynthesis of pteridines and xanthommatin in Drosophila melanogaster Biochemical Genetics, 24(7–8): 545–569, https://doi.org/10.1007/BF00504334.

    Google Scholar 

  18. Gao J S, Wang J, Wang W J, Liu C L, Meng Y. 2013. Isolation, purification, and identification of an important pigment, sepiapterin, from integument of the Lemonmutant of the silkworm, Bombyx mori. Journal of Insect Science, 13(1): 118, https://doi.org/10.1673/031.013.11801.

    Google Scholar 

  19. Gonzalez-Rey M, Serafim A, Company R, Bebianno M J. 2007. Adaptation to metal toxicity: a comparison of hydrothermal vent and coastal shrimps. Marine Ecology, 28(1): 100–107, https://doi.org/10.1111/j.1439-0485.2006.00126.x.

    Article  Google Scholar 

  20. Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7): 644–652, https://doi.org/10.1038/nbt.1883.

    Article  Google Scholar 

  21. Green M M. 1949. A study of tryptophane in eye color mutants of Drosophila. Genetics, 34(5): 564–572.

    Google Scholar 

  22. Gregory M S. 2010. Innate immune system and the eye. In: Encyclopedia of the Eye. Academic Press, London. p.439–445, https://doi.org/10.1016/B978-0-12-374203-2.00003-8.

    Google Scholar 

  23. Griffith T S, Brunner T, Fletcher S M, Green D R, Ferguson T A. 1995. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science, 270(5239): 1 189–1 192, https://doi.org/10.1126/science.270.5239.1189.

    Article  Google Scholar 

  24. Grubbs N, Haas S, Beeman R W, Lorenzen M D. 2015. The ABCs of eye color in Tribolium castaneum: orthologs of the Drosophila white, scarlet, and brown genes. Genetics, 199(3): 749–759, https://doi.org/10.1534/genetics.114.173971.

    Article  Google Scholar 

  25. Hori J, Wang M C, Miyashita M, Tanemoto K, Takahashi H, Takemori T, Okumura K, Yagita H, Azuma M. 2006. B7–H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. The Journal of Immunology, 177(9): 5 928–5 935, https://doi.org/10.4049/jimmunol.177.9.5928.

    Article  Google Scholar 

  26. Hubbard J K, Uy J A, Hauber M E, Hoekstra H E, Safran R J. 2010. Vertebrate pigmentation: from underlying genes to adaptive function. Trends in Genetics, 26(5): 231–239, https://doi.org/10.1016/j.tig.2010.02.002.

    Article  Google Scholar 

  27. Hui M, Cheng J, Sha Z L. 2018. Adaptation to the deep-sea hydrothermal vents and cold seeps: insights from the transcriptomes of Alvinocaris longirostris in both environments. Deep Sea Research Part I: Oceanographic Research Papers, 135: 23–33, https://doi.org/10.1016/j.dsr.2018.03.014.

    Article  Google Scholar 

  28. Hui M, Song C W, Liu Y, Li C L, Cui Z X. 2017. Exploring the molecular basis of adaptive evolution in hydrothermal vent crab Austinograea alayseae by transcriptome analysis. PLoS One, 12(5): e0178417, https://doi.org/10.1371/journal.pone.0178417.

    Article  Google Scholar 

  29. Ichiki R, Nakahara Y, Kainoh Y, Nakamura S. 2007. Temperature-sensitive eye colour mutation in the parasitoid fly Exorista japonica Townsend (Dipt.: Tachinidae). Journal of Applied Entomology, 131(4): 289–292, https://doi.org/10.1111/j.1439-0418.2007.01160.x.

    Article  Google Scholar 

  30. Jiang Y L, Zhang S H, Xu J, Feng J X, Mahboob S, Al-Ghanim K A, Sun X W, Xu P, Slominski A T. 2014. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp. PLoS One, 9(9): e108200, https://doi.org/10.1371/journal.pone.0108200.

    Article  Google Scholar 

  31. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 36(Database issue): D480–D484, https://doi.org/10.1093/nar/gkm882.

    Google Scholar 

  32. Komai T, Menot L, Segonzac M. 2016. New records of caridean shrimp (Crustacea: Decapoda) from hydrothermally influenced fields off Futuna Island, Southwest Pacific, with description of a new species assigned to the genus Alvinocaridinides Komai & Chan, 2010 (Alvinocarididae). Zootaxa, 4098(2): 298, https://doi.org/10.11646/zootaxa.4098.2.5.

    Article  Google Scholar 

  33. Komai T, Segonzac M. 2005. A revision of the genus Alvinocaris Williams and Chace (Crustacea: Decapoda: Caridea: Alvinocarididae), with descriptions of a new genus and a new species of Alvinocaris. Journal of Natural History, 39(15): 1 111–1 175, https://doi.org/10.1080/00222930400002499.

    Article  Google Scholar 

  34. Letunic I, Doerks T, Bork P. 2012. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Research, 40(D1): D302–D305, https://doi.org/10.1093/nar/gkr931.

    Article  Google Scholar 

  35. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics, 25(14): 1 754–1 760, https://doi.org/10.1093/bioinformatics/btp324.

    Article  Google Scholar 

  36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009a. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics, 25(16): 2 078–2 079, https://doi.org/10.1093/bioinformatics/btp352.

    Article  Google Scholar 

  37. Li L, Zhao J M, Wang L L, Qiu L M, Zhang H, Dong C H, Cong M, Song L S. 2009b. The polymorphism of lysozyme gene in Zhikong scallop (Chlamys farreri) and its association with susceptibility/resistance to Listonella anguillarum. Fish & Shellfish Immunology, 27(2): 136–142, https://doi.org/10.1016/j.fsi.2008.12.005.

    Article  Google Scholar 

  38. Lorenzen M D, Brown S J, Denell R E, Beeman R W. 2002. Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Genetics, 160(1): 225–234.

    Google Scholar 

  39. Lowell R P, Rona P A, Von Herzen R P. 1995. Seafloor hydrothermal systems. Journal of Geophysical Research: Solid Earth, 100(B1): 327–352, https://doi.org/10.1029/94JB02222.

    Article  Google Scholar 

  40. Mackay W J, O’Donnell J M. 1983. A genetic analysis of the pteridine biosynthetic enzyme, guanosine triphosphate cyclohydrolase, in Drosophila melanogaster. Genetics, 105(1): 35–53

    Article  Google Scholar 

  41. Mackenzie S M, Brooker M R, Gill T R, Cox G B, Howells A J, Ewart G D. 1999. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration. Biochimica et Biophysica Acta, 1419(2): 173–185, https://doi.org/10.1016/S0005-2736(99)00064-4.

    Article  Google Scholar 

  42. Needham A E. 1970. The integumental pigments of some isopod crustacea. Comparative Biochemistry and Physiology, 35(3): 509–534, https://doi.org/10.1016/0010-406X(70)90970-9.

    Article  Google Scholar 

  43. Pan C Y, Chao T T, Chen J C, Chen J Y, Liu W C, Lin C H, Kuo C M. 2007. Shrimp (Penaeus monodon) anti-lipopolysaccharide factor reduces the lethality of Pseudomonas aeruginosa spesis in mice. International Immunopharmacology, 7(5): 687–700, https://doi.org/10.1016/j.intimp.2007.01.006.

    Article  Google Scholar 

  44. Perazzolo L M, Lorenzini D M, Daffre S, Barracco M A. 2005. Purification and partial characterization of the plasma clotting protein from the pink shrimp Farfantepenaeus paulensis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(3): 302–307, https://doi.org/10.1016/jxbpb.2005.07.015.

    Article  Google Scholar 

  45. Petersen T N, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature Methods, 8(10): 785–786, https://doi.org/10.1038/nmeth.1701.

    Article  Google Scholar 

  46. Philip R, V A V, Antony S P, S S K, Wilson W, Babu D T, P J, Singh I S B. 2016. Antimicrobial peptides in crustaceans: molecular and functional characterization. Fish & Shellfish Immunology, 53: 59–60, https://doi.org/10.1016/j.fsi.2016.03.047.

    Article  Google Scholar 

  47. Pond D W, Dixon D R, Sargent J R. 1997. Wax-ester reserves facilitate dispersal of hydrothermal vent shrimps. Marine Ecology Progress Series, 146(1–3): 289–290, https://doi.org/10.3354/meps146289.

    Article  Google Scholar 

  48. Qian Y Q, Dai L, Yang J S, Yang F, Chen D F, Fujiwara Y, Tsuchida S, Nagasawa H, Yang W J. 2009. CHH family peptides from an ‘eyeless’ deep-sea hydrothermal vent shrimp, Rimicaris kairei: characterization and sequence analysis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 154(1): 37–47, https://doi.org/10.1016/j.cbpb.2009.04.013.

    Article  Google Scholar 

  49. Ravaux J, Gaill F, Le Bris N, Sarradin P M, Jollivet D, Shillito B. 2003. Heat-shock response and temperature resistance in the deep-sea vent shrimp Rimicaris exoculata. Journal of Experimental Biology, 206(14): 2 345–2 354, https://doi.org/10.1242/jeb.00419.

    Article  Google Scholar 

  50. Ravaux J, Toullec J Y, Léger N, Lopez P, Gaill F, Shillito B. 2007. First hsp70 from two hydrothermal vent shrimps-Mirocaris fortunata and Rimicaris exoculata: characterization and sequence analysis. Gene, 386(1–2): 162–172, https://doi.org/10.1016/j.gene.2006.09.001.

    Article  Google Scholar 

  51. Reaume A G, Clark S H, Chovnick A. 1989. Xanthine dehydrogenase is transported to the Drosophila eye. Genetics, 123(3): 503–509.

    Article  Google Scholar 

  52. Reaume A G, Knecht D A, Chovnick A. 1991. The rosy locus in Drosophila melanogaster: xanthine dehydrogenase and eye pigments. Genetics, 129(4): 1 099–1 109.

    Article  Google Scholar 

  53. Sarkar A, Collins F H. 2000. Eye color genes for selection of transgenic insects. In: Handler A M, James A A eds. Insect Transgenesis. CRC Press, Boca Raton. p.79–92.

    Google Scholar 

  54. Sato H, Nakasone K, Yoshida T, Kato C, Maruyama T. 2015. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Extremophiles, 19(4): 751–762, https://doi.org/10.1007/s00792-015-0751-4.

    Article  Google Scholar 

  55. Simäo F A, Waterhouse R M, Ioannidis P, Kriventseva E V, Zdobnov E M. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics, 31(19): 3 210–3 212, https://doi.org/10.1093/bioinformatics/btv351.

    Article  Google Scholar 

  56. Stein-Streilein J. 2008. Immune regulation and the eye. Trends in Immunology, 29(11): 548–554, https://doi.org/10.1016/j.it.2008.08.002.

    Article  Google Scholar 

  57. Summers K M, Howells A J, Pyliotis N A. 1982. Biology of eye pigmentation in insects. Advances in Insect Physiology, 16: 119–166, https://doi.org/10.1016/S0065-2806(08)60153-8.

    Article  Google Scholar 

  58. Suthianthong P, Donpudsa S, Supungul P, Tassanakajon A, Rimphanitchayakit V. 2012. The N-terminal glycine-rich and cysteine-rich regions are essential for antimicrobial activity of crustinPm1 from the black tiger shrimp Penaeus monodon. Fish & Shellfish Immunology, 33(4): 977–983, https://doi.org/10.1016/j.fsi.2012.08.010.

    Article  Google Scholar 

  59. Tassanakajon A, Amparyup P, Somboonwiwat K, Supungul P. 2011. Cationic antimicrobial peptides in Penaeid shrimp. Marine Biotechnology, 13(4): 639–657, https://doi.org/10.1007/s10126-011-9381-8.

    Article  Google Scholar 

  60. Taylor A W. 2007. Ocular immunosuppressive microenvironment. Chemical Immunology and Allergy, 92: 71–85, https://doi.org/10.1159/000099255.

    Article  Google Scholar 

  61. Van Dover C L, Szuts E Z, Chamberlain S C, Cann J R. 1989. A novel eye in ‘eyeless’ shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature, 337(6206): 458–460, https://doi.org/10.1038/337458a0.

    Article  Google Scholar 

  62. Wang X W, Wang J X. 2013. Diversity and multiple functions of lectins in shrimp immunity. Developmental and Comparative Immunology, 39(1–2): 27–38, https://doi.org/10.1016/j.dci.2012.04.009.

    Article  Google Scholar 

  63. Watt W B. 1972. Xanthine dehydrogenase and pteridine metabolism in Colias butterflies. Journal of Biological Chemistry, 247(5): 1 445–1 451.

    Article  Google Scholar 

  64. Wilson T G, Jacobson K B. 1977. Mechanism of suppression in Drosophila. V. Localization of the purple mutant of Drosophila melanogaster in the pterine biosynthetic pathway. Biochemical Genetics, 15(3–4): 321–332, https://doi.org/10.1007/BF00484463.

    Article  Google Scholar 

  65. Wong Y H, Sun J, He L S, Chen L G, Qiu J W, Qian P Y. 2015. High-throughput transcriptome sequencing of the cold seep mussel Bathymodiolus platifrons. Scientific Reports, 5(1): 16 597, https://doi.org/10.1038/srep16597.

    Article  Google Scholar 

  66. Wu Y Z, Qiu J W, Qian P Y, Wang Y. 2018. The vertical distribution of prokaryotes in the surface sediment of Jiaolong cold seep at the northern South China Sea. Extremophiles, 22(3): 499–510, https://doi.org/10.1007/s00792-018-1012-0.

    Article  Google Scholar 

  67. Yamamoto M, Howells A J, Ryall R L. 1976. The ommochrome biosynthetic pathway in Drosophila melanogaster: the head particulate phenoxazinone synthase and the developmental onset of xanthommatin synthesis. Biochemical Genetics, 14(11–12): 1 077–1 090, https://doi.org/10.1007/BF00485139.

    Article  Google Scholar 

  68. Yang J, Lian L S, Zhao C J, Bai L H, Wu C X. 2006. Genetic characteristic and eye pigment analysis of bright-red-eye outcross progeny of Bar fly. Journal of China Agricultural University, 11(5): 13–16. (in Chinese with English abstract)

    Google Scholar 

  69. Ye J, Fang L, Zheng H K, Zhang Y, Chen J, Zhang Z J, Wang J, Li S T, Li R Q, Bolund L, Wang J. 2006. WEGO: a web tool for plotting GO annotations. Nucleic Acids Research, 34(S2): W293–W297, https://doi.org/10.1093/nar/gkl031.

    Article  Google Scholar 

  70. Young M D, Wakefield M J, Smyth G K, Oshlack A. 2010. Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biology, 11(2): R14, https://doi.org/10.1186/gb-2010-11-2-r14.

    Article  Google Scholar 

  71. Zamiri P, Masli S, Kitaichi N, Taylor A W, Streilein J W. 2007. Thrombospondin plays a vital role in the immune privilege of the eye. Ocular Immunology and Inflammation, 15(3): 279–294, https://doi.org/10.1080/09273940701382432.

    Article  Google Scholar 

  72. Zhang J, Sun Q L, Luan Z D, Lian C, Sun L. 2017a. Comparative transcriptome analysis of Rimicaris sp. reveals novel molecular features associated with survival in deep-sea hydrothermal vent. Scientific Reports, 7: 2 000, https://doi.org/10.1038/s41598-017-02073-9.

    Article  Google Scholar 

  73. Zhang Y J, Sun J, Chen C, Watanabe H K, Feng D, Zhang Y, Chiu J M Y, Qian P Y, Qiu J W. 2017b. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species. Scientific Reports, 7: 46 205, https://doi.org/10.1038/srep46205.

    Article  Google Scholar 

  74. Zhu W B, Wang L M, Dong Z J, Chen X T, Song F B, Liu N, Yang H, Fu J J. 2016. Comparative transcriptome analysis identifies candidate genes related to skin color differentiation in red tilapia. Scientific Reports, 6: 31 347, https://doi.org/10.1038/srep31347.

    Article  Google Scholar 

Download references

Acknowledgment

The samples were collected by R/V Kexue. The authors wish to thank the crews for their help during collection of samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhongli Sha.

Additional information

Data Availability Statement

Raw reads of the sequencing are deposited in the Sequence Read Archive (SRA) database of NCBI with the BioProject accession number PRJNA548620. All other data generated or analyzed during this study are included in this published article and its supplementary information files.

Supported by the National Key R&D Program of China (No. 2018YFC0310802), the National Natural Science Foundation of China (No. 31872215), the Senior User Project of R/V Kexue (No. KEXUE2019GZ02), the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (No. XDA22050302), and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-DQC036)

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xin, Q., Hui, M., Li, C. et al. Eyes of differing colors in Alvinocaris longirostris from deep-sea chemosynthetic ecosystems: genetic and molecular evidence of its formation mechanism. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-9312-5

Download citation

Keywords

  • alvinocaridid shrimps
  • cold seep and hydrothermal vent
  • differentially expressed genes
  • eye color
  • single nucleotide polymorphism (SNP) mutation
  • transcriptome