Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak

Abstract

Antibiotics released into the environment through anthropogenic activities exert selective pressure, driving bacteria towards increasing antimicrobial resistance. The prevalence of antibiotics and the ecological risks posed in the riverine estuarine of Larut River and Sangga Besar River, which included wastewater effluents from hospital, zoo, and poultry slaughterhouse sources were investigated. Solid phase extraction (SPE) followed by high-performance liquid chromatography tandem mass chromatography (HPLC-MS/MS) were used to extract and quantify the antibiotic residues from 22 antibiotics belonging to six major antibiotic classes (sulfonamide, macrolide, fluoroquinolone, phenicol, trimethoprim, and tetracycline). Sixteen antibiotic residues were detected with concentrations ranging from limit of detection (LOD) to 1 262.3 ng/L. Fluoroquinolones and macrolides were the most frequently detected compounds. Erythromycin, clarithromycin, and ofloxacin detected in hospital and zoo effluents posed a high risk to algae while tetracycline had low to medium ecological risks toward all the relevant organisms from aquatic environments (algae, invertebrate Daphnia magna, and fish).

This is a preview of subscription content, log in to check access.

References

  1. Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunström B, Fick J, Gunnarsson L, Larsson D G J, Sumpter J P, Tysklind M, Rudén C. 2015. Improving environmental risk assessment of human pharmaceuticals. Environmental Science & Technology49 (9): 5336–5345, https://doi.org/10.1021/acs.est.5b00302.

    Article  Google Scholar 

  2. Ahmad B, Hasan Z A. 2011. Flood map of Tupai River using combined 1D and 2D modeling. In: Proceedings of the 3rd International Conference on Managing Rivers in the 21st Century: Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity. Penang, Malaysia. p.491–496.

    Google Scholar 

  3. Allen H K, Donato J, Wang H H, Cloud-Hansen K A, Davies J, Handelsman J. 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology8 (4): 251–259, https://doi.org/10.1038/nrmicro2312.

    Article  Google Scholar 

  4. Al-Qaim F F, Mussa Z H, Yuzir A, Tahrim N A, Hashim N, Azman S. 2018. Transportation of different therapeutic classes of pharmaceuticals to the surface water, sewage treatment plant, and hospital samples, Malaysia. Water, 10 (7): 916, https://doi.org/10.3390/w10070916.

    Article  Google Scholar 

  5. Ando T, Nagase H, Eguchi K, Hirooka T, Nakamura T, Miyamoto K, Hirata K. 2007. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents. Environmental Toxicology and Chemistry, 26 (4): 601–606.

    Article  Google Scholar 

  6. Annual Fisheries of Perak. 2000. Annual Fisheries Statistics 2000–2004. p.24–40.

    Google Scholar 

  7. Arikan O A, Rice C, Codling E. 2008. Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination226 (1-3): 121–133, https://doi.org/10.1016/j.desal.2007.01.238.

    Article  Google Scholar 

  8. Baquero F, Martínez J L, Cantón R. 2008. Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology19 (3): 260–265, https://doi.org/10.1016/j.copbio.2008.05.006.

    Article  Google Scholar 

  9. Batt A L, Bruce I B, Aga D S. 2006. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution142 (2): 295–302, https://doi.org/10.1016/j.envpol.2005.10.010.

    Article  Google Scholar 

  10. Bengtsson-Palme J, Larsson D G J. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environment International86: 140–149, https://doi.org/10.1016/j.envint.2015.10.015.

    Article  Google Scholar 

  11. Berendonk T U, Manaia C M, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez J L. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology13 (5): 310–317, https://doi.org/10.1038/nrmicro3439.

    Article  Google Scholar 

  12. Cabello F C, Godfrey H P, Buschmann A H, Dölz H J. 2016. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. The Lancet Infectious Diseases16 (7): E127–E133, https://doi.org/10.1016/S1473-3099(16)00100-6.

    Article  Google Scholar 

  13. Cabello F C. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environmental Microbiology8 (7): 1137–1144, https://doi.org/10.1111/j.1462-2920.2006.01054.x.

    Article  Google Scholar 

  14. Chang X S, Meyer M T, Liu X Y, Zhao Q, Chen H, Chen J A, Qiu Z Q, Yang L, Cao J, Shu W Q. 2010. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China. Environmental Pollution158 (5): 1444–1450, https://doi.org/10.1016/j.envpol.2009.12.034.

    Article  Google Scholar 

  15. Chen Y H, Chen H J, Zhang L, Jiang Y, Gin K Y H, He Y L. 2018. Occurrence, distribution, and risk assessment of antibiotics in a subtropical river-reservoir system. Water10 (2): 104, https://doi.org/10.3390/w10020104.

    Article  Google Scholar 

  16. Davis J G, Truman C C, Kim S C, Ascough II J C, Carlson K. 2006. Antibiotic transport via runoff and soil loss. Journal of Environmental Quality35 (6): 2250–2260, https://doi.org/10.2134/jeq2005.0348.

    Article  Google Scholar 

  17. Deng W J, Li N, Zheng H L, Lin H Y. 2016. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicology and Environmental Safety125: 121–127, https://doi.org/10.1016/j.ecoenv.2015.12.002.

    Article  Google Scholar 

  18. Department of Statistics Malaysia. 2011. Population Distribution and Basic Demographic Characteristics. Department of Statistics Malaysia. p.67–68.

    Google Scholar 

  19. Divya S P, Hatha A A M. 2019. Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. International Journal of Hygiene and Environmental Health222 (2): 235–248, https://doi.org/10.1016/j.ijheh.2018.11.002.

    Article  Google Scholar 

  20. Diwan V, Tamhankar A J, Khandal R K, Sen S, Aggarwal M, Marothi Y, Iyer R V, Sundblad-Tonderski K, Stålsby-Lundborg C. 2010. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health10: 414, https://doi.org/10.1186/1471-2458-10-414.

    Article  Google Scholar 

  21. Du J, Zhao H X, Liu S S, Xie H J, Wang Y, Chen J W. 2017. Antibiotics in the coastal water of the South Yellow Sea in China: occurrence, distribution and ecological risks. Science of the Total Environment595: 521–527, https://doi.org/10.1016/j.scitotenv.2017.03.281.

    Article  Google Scholar 

  22. European Commission Joint Research Centre. 2003. Technical Guidance Document on Risk Assessment. Part II. EUR 20418 EN/2. European Commission Joint Research Centre.

    Google Scholar 

  23. Forestry Department of Perak. 2010. The Management of Matang Mangrove Forest, Perak, Malaysia. http://www.unepscs.org/Mangrove-Training/20-Matang-Management.pdf. Accessed on 2018-12-13.

    Google Scholar 

  24. García-Galán M J, Díaz-Cruz M S, Barceló D. 2011. Occurrence of sulfonamide residues along the Ebro river basin: Removal in wastewater treatment plants and environmental impact assessment. Environment International37 (2): 462–473, https://doi.org/10.1016/j.envint.2010.11.011.

    Article  Google Scholar 

  25. Garcillán-Barcia M P, Alvarado A, de la Cruz F. 2011. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiology Reviews35 (5): 936–956, https://doi.org/10.1111/j.1574-6976.2011.00291.x.

    Article  Google Scholar 

  26. Gauthier H, Yargeau V, Cooper D G. 2010. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Science of the Total Environment408 (7): 1701–1706, https://doi.org/10.1016/j.scitotenv.2009.12.012.

    Article  Google Scholar 

  27. Ghaderpour A, Ho W S, Chew L L, Bong C W, Chong V C, Thong K L, Chai L C. 2015. Diverse and abundant multi-drug resistant E coli in Matang mangrove estuaries, Malaysia. Frontiers in Microbiology6: 977, https://doi.org/10.3389/fmicb.2015.00977.

    Article  Google Scholar 

  28. Göbel A, Thomsen A, McArdell C S, Joss A, Giger W. 2005. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology39 (11): 3981–3989, https://doi.org/10.1021/es048550a.

    Article  Google Scholar 

  29. Grenni P, Ancona V, Caracciolo A B. 2018. Ecological effects of antibiotics on natural ecosystems: a review. Microchemical Journal136: 25–39, https://doi.org/10.1016/j.microc.2017.02.006.

    Article  Google Scholar 

  30. Halling-Sørensen B. 2000. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere40 (7): 731–739, https://doi.org/10.1016/S0045-6535(99)00445-2.

    Article  Google Scholar 

  31. Hammer Ø, Harper D A T, Ryan P D. 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 1–9.

    Google Scholar 

  32. Hassali M A A, Yann H R, Verma A K, Hussain R, Sivaraman S. 2018. Antibiotic Use in Food Animals: Malaysia Overview. Discipline of Social & Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia. 29p.

    Google Scholar 

  33. Houtman C J, van Oostveen A M, Brouwer A, Lamoree M H, Legler J. 2004. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation. Environmental Science & Technology38 (23): 6415–6423, https://doi.org/10.1021/es049750p.

    Article  Google Scholar 

  34. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. 2002. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrobial Agents and Chemotherapy46 (9): 3045–3049, https://doi.org/10.1128/AAC.46.9.3045-3049.2002.

    Article  Google Scholar 

  35. Iglesias A, Nebot C, Miranda J M, Vázquez B I, Abuín C M F, Cepeda A. 2013. Determination of the presence of three antimicrobials in surface water collected from urban and rural areas. Antibiotics2 (1): 46–57, https://doi.org/10.3390/antibiotics2010046.

    Article  Google Scholar 

  36. Jank L, Hoff R B, da Costa F J, Pizzolato T M. 2014. Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionisation mass spectrometry. International Journal of Environmental Analytical Chemistry94 (10): 1013–1037, https://doi.org/10.1080/03067319.2014.914184.

    Article  Google Scholar 

  37. Jiang L, Hu X L, Yin D Q, Zhang H C, Yu Z Y. 2011. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere82 (6): 822–828, https://doi.org/10.1016/j.chemosphere.2010.11.028.

    Article  Google Scholar 

  38. Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. 2008. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research42 (13): 3498–3518, https://doi.org/10.1016/j.watres.2008.04.026.

    Article  Google Scholar 

  39. Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators8 (1): 1–13, https://doi.org/10.1016/j.ecolind.2007.06.002.

    Article  Google Scholar 

  40. Kim S C, Carlson K. 2006. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed. Water Research40 (13): 2549–2560, https://doi.org/10.1016/j.watres.2006.04.036.

    Article  Google Scholar 

  41. Kimosop S J, Getenga Z M, Okello V A, Cheruiyot J K. 2016. Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya. Environmental Monitoring and Assessment188 (9): 532, https://doi.org/10.1007/s10661-016-5534-6.

    Article  Google Scholar 

  42. Lee Y J, Lee S E, Lee D S, Kim Y H. 2008. Risk assessment of human antibiotics in Korean aquatic environment. Environmental Toxicology and Pharmacology26 (2): 216–221, https://doi.org/10.1016/j.etap.2008.03.014.

    Article  Google Scholar 

  43. Li S, Shi W Z, Liu W, Li H M, Zhang W, Hu J R, Ke Y C, Sun W L, Ni J R. 2018. A duodecennial national synthesis of antibiotics in China’s major rivers and seas (2005-2016). Science of the Total Environment615: 906–917, https://doi.org/10.1016/j.scitotenv.2017.09.328.

    Article  Google Scholar 

  44. Lu Z H, Na G S, Gao H, Wang L J, Bao C G, Yao Z W. 2015. Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities. Science of the Total Environment527-528: 429–438, https://doi.org/10.1016/j.scitotenv.2015.04.101.

    Article  Google Scholar 

  45. Lundborg C S, Tamhankar A J. 2017. Antibiotic residues in the environment of South East Asia. BMJ358: j2440, https://doi.org/10.1136/BMJ.J2440.

    Article  Google Scholar 

  46. Luo Y, Xu L, Rysz M, Wang Y Q, Zhang H, Alvarez P J J. 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology45 (5): 1827–1833, https://doi.org/10.1021/es104009s.

    Article  Google Scholar 

  47. Lye Y L, Bong C W, Lee C W, Zhang R J, Zhang G, Suzuki S, Chai L C. 2019. Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. Science of the Total Environment688: 1335–1347, https://doi.org/10.1016/j.scitotenv.2019.06.304.

    Article  Google Scholar 

  48. Magdaleno A, Saenz M E, Juárez A B, Moretton J. 2015. Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata Ecotoxicology and Environmental Safety113: 72–78, https://doi.org/10.1016/j.ecoenv.2014.11.021.

    Google Scholar 

  49. Managaki S, Murata A, Takada H, Tuyen B C, Chiem N H.2007. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters: ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science & Technology41 (23): 8004–8010, https://doi.org/10.1021/es0709021.

    Article  Google Scholar 

  50. Marni S, Malintan N T, Faridah I, Mustafa A M. 2010. Chloramphenicol in Malaysia waste water and its residues in animal husbandaries products. Health and the Environment Journal, 1 (1), 41–45.

    Google Scholar 

  51. Martinez J L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution157 (11): 2893–2902, https://doi.org/10.1016/j.envpol.2009.05.051.

    Article  Google Scholar 

  52. Marzuki Z. 2017. Use of antimicrobial agents in veterinary medicine in Malaysia. 2nd OIE Information Seminar for Praticing Veterinatians: combating AMR. Kuala Lumpur, Malaysia. http://vam.org.my/home/wp-content/uploads/2017/11/Mazuki_AMU-in-Vet-Med.pdf. Accessed on 2019-08-29.

    Google Scholar 

  53. McArdell C S, Molnar E, Suter M J F, Giger W. 2003. Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland. Environmental Science & Technology37 (24): 5479–5486, https://doi.org/10.1021/es034368i.

    Article  Google Scholar 

  54. McElligott E M, Sommardahl C S, Cox S K.2017. Pharmacokinetics of chloramphenicol base after oral administration in adult horses. Journal of the American Veterinary Medical Association251 (1): 90–94, https://doi.org/10.2460/javma.251.1.90.

    Article  Google Scholar 

  55. Miao X S, Bishay F, Chen M, Metcalfe C D. 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology38 (13): 3533–3541, https://doi.org/10.1021/es030653q.

    Article  Google Scholar 

  56. Michalova E, Novotna P, Schlegelova J. 2004. Tetracyclines in veterinary medicine and bacterial resistance to them. Veterinarni Medicina49 (3): 79–100, https://doi.org/10.17221/5681-VETMED.

    Article  Google Scholar 

  57. Ministry of Health Malaysia. 2014. Food Act 1983 Food (Amendment) (No. 3. Regulations 2014. Ministry of Health, Malaysia. 45p.

    Google Scholar 

  58. Ministry of Health Malaysia. 2017a. Malaysian Statistics on Medicines 2011–2014. Ministry of Health Malaysia. p.67–219.

    Google Scholar 

  59. Ministry of Health Malaysia. 2017b. Malaysian Action Plan on Antimicrobial Resistance (MyAP-AMR) 2017–2021. Ministry of Health, Malaysia, Ministry of Agriculture & Agro-Based Industry Malaysia, Malaysia. 51p.

    Google Scholar 

  60. Mohamad I, Johan K B, Hashim H Z, Othman N N.2014. Otitis externa complicated with chloramphenicol ear drops-induced perichondritis. Malaysian Family Physician, 9 (1): 28–29.

    Google Scholar 

  61. Muda A, Ahmad Z M A, Lim K L. 2005. Sustainable management and conservation of the matang mangroves. Forestry Department Peninsular Malaysia, 39–52.

    Google Scholar 

  62. Mutiyar P K, Mittal A K.2014. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environmental Monitoring and Assessment186 (1): 541–557, https://doi.org/10.1007/s10661-013-3398-6.

    Article  Google Scholar 

  63. O’Neill J. 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance, London. 1–76.

    Google Scholar 

  64. Olarinmoye O, Bakare A, Ugwumba O, Hein A. 2016. Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos, Nigeria. Journal of Environmental Chemistry and Ecotoxicology8 (3): 14–24, https://doi.org/10.5897/jece2015.0364.

    Article  Google Scholar 

  65. Ory J, Bricheux G, Togola A, Bonnet J L, Donnadieu-Bernard F, Nakusi L, Forestier C, Traore O. 2016. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environmental Pollution214: 635–645, https://doi.org/10.1016/j.envpol.2016.04.033.

    Article  Google Scholar 

  66. Osorio V, Larrañaga A, Aceña J, Pérez S, Barceló D. 2016. Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment540: 267–277, https://doi.org/10.1016/j.scitotenv.2015.06.143.

    Article  Google Scholar 

  67. Partridge S R. 2011. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiology Reviews35 (5): 820–855, https://doi.org/10.1111/j.1574-6976.2011.00277.x.

    Article  Google Scholar 

  68. Pérez Gaudio D S, Colello R, Fernández D, Mozo J, Martínez G, Fernández Paggi M B, Decundo J M, Romanelli A, Dieguez S, Etcheverría A, Padola N L, Soraci A L. 2018. Horizontal transference of antimicrobial resistance genes between a non pathogenic Escherichia coli and a pathogenic shiga toxin-producing E coli strain. EC Veterinary Science, 3 (2): 293–299.

    Google Scholar 

  69. Pham T D M, Ziora Z M, Blaskovich M A T. 2019. Quinolone antibiotics. MedChemComm10 (10): 1719–1739, https://doi.org/10.1039/C9MD00120D.

    Article  Google Scholar 

  70. Poirel L, Liard A, Rodriguez-Martinez J M, Nordmann P. 2005. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. Journal of Antimicrobial Chemotherapy56 (6): 1118–1121, https://doi.org/10.1093/jac/dki371.

    Article  Google Scholar 

  71. Praveena S M, Shaifuddin S N M, Sukiman S, Nasir F A M, Hanafi Z, Kamarudin N, Ismail T H T, Aris A Z.2018. Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia): occurrence and potential risk assessments. Science of the Total Environment642: 230–240, https://doi.org/10.1016/j.scitotenv.2018.06.058.

    Article  Google Scholar 

  72. Roberts J A, Norris R, Paterson D L, Martin J M.2012. Therapeutic drug monitoring of antimicrobials. British Journal of Clinical Pharmacology73 (1): 27–36, https://doi.org/10.1111/j.1365-2125.2011.04080.x.

    Article  Google Scholar 

  73. Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research69: 234–242, https://doi.org/10.1016/j.watres.2014.11.021.

    Article  Google Scholar 

  74. Sakai N, Yusof M R, Sapar M, Yoneda M, Mohd M A.2016. Spatial analysis and source profiling of beta-agonists and sulfonamides in Langat River basin, Malaysia. Science of the Total Environment548-549: 43–50, https://doi.org/10.1016/j.scitotenv.2016.01.040.

    Article  Google Scholar 

  75. Samuding K, Tadza M, Rahman A, Abustan I, Mejus L, Mostapa R. 2009. Integrated study on the distribution of contamination flow path at a waste disposal site in Malaysia. In: Yu X Y ed. Municipal and Industrial Waste Disposal. Intech Open. p.55–70, https://doi.org/10.5772/30766.

    Google Scholar 

  76. Shamsuddin S, Akkawi M E, Zaidi S T R, Ming L C.2016. Antimicrobial drug use in primary healthcare clinics: a retrospective evaluation. International Journal of Infectious Diseases52: 16–22, https://doi.org/10.1016/j.ijid.2016.09.013.

    Article  Google Scholar 

  77. Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, Nakada N, Murata A, Suzuki T, Suzuki S, Chiem N H, Tuyen B C, Viet P H, Siringan M A, Kwan C, Zakaria M P, Reungsang A. 2013. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Science of the Total Environment452-453: 108–115, https://doi.org/10.1016/j.scitotenv.2013.02.027.

    Article  Google Scholar 

  78. Siti F A, Kamarudin A, Nik N A N O. 2014. Malaysian Statistics on Medicines 2009 & 2010. Pharmaceutical Services Division and Clinical Research Centre, Malaysia. 206p.

    Google Scholar 

  79. Szekeres E, Baricz A, Chiriac C M, Farkas A, Opris O, Soran M L, Andrei A S, Rudi K, Balcázar J L, Dragos N, Coman C. 2017. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environmental Pollution225: 304–315, https://doi.org/10.1016/j.envpol.2017.01.054.

    Article  Google Scholar 

  80. Tan G H, Low Q Q, Lim H C, Seah H K, Chan H K.2017. Inappropriate antibiotic utilization: outpatient prescription review of a regional secondary hospital in Kedah, Malaysia. Journal of Pharmacy Practice and Community Medicine3 (4): 215–219, https://doi.org/10.5530/jppcm.2017.4.62.

    Article  Google Scholar 

  81. Tappe W, Herbst M, Hofmann D, Koeppchen S, Kummer S, Thiele B, Groeneweg J. 2013. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4, isolated from lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Applied and Environmental Microbiology79 (8): 2572–2577, https://doi.org/10.1128/AEM.03636-12.

    Article  Google Scholar 

  82. Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R, Martin-Laurent F, Sabourin L, Scott A, Sumarah M. 2013. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading microbacterium sp. Journal of Environmental Quality42 (1): 173–178, https://doi.org/10.2134/jeq2012.0162.

    Article  Google Scholar 

  83. van Boeckel T P, Gandra S, Ashok A, Caudron Q, Grenfell B T, Levin S A, Laxminarayan R. 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases14 (8): 742–750, https://doi.org/10.1016/S1473-3099(14)70780-7.

    Article  Google Scholar 

  84. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D. 2012. Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment430: 109–118, https://doi.org/10.1016/j.scitotenv.2012.04.055.

    Article  Google Scholar 

  85. Wang Q, Wang P L, Yang Q X.2018. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater. Science of the Total Environment621: 990–999, https://doi.org/10.1016/j.scitotenv.2017.10.128.

    Article  Google Scholar 

  86. Xu J, Zhang Y, Zhou C B, Guo C S, Wang D M, Du P, Luo Y, Wan J, Meng W. 2014. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Science of the Total Environment497-498: 267–273, https://doi.org/10.1016/j.scitotenv.2014.07.114.

    Article  Google Scholar 

  87. Xu W H, Zhang G, Zou S C, Ling Z H, Wang G L, Yan W. 2009. A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environment Research81 (3): 248–254, https://doi.org/10.2175/106143008x325719.

    Article  Google Scholar 

  88. Xue B M, Zhang R J, Wang Y H, Liu X, Li J, Zhang G. 2013. Antibiotic contamination in a typical developing city in south China: occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety92: 229–236, https://doi.org/10.1016/j.ecoenv.2013.02.009.

    Article  Google Scholar 

  89. Yang C C, Huang C L, Cheng T C, Lai H T. 2015. Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics. International Biodeterioration & Biodegradation102: 116–125, https://doi.org/10.1016/j.ibiod.2015.01.015.

    Article  Google Scholar 

  90. Yao L L, Wang Y X, Tong L, Deng Y M, Li Y G, Gan Y Q, Guo W, Dong C J, Duan Y H, Zhao K. 2017. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: a case study at Jianghan Plain, central China. Ecotoxicology and Environmental Safety135: 236–242, https://doi.org/10.1016/j.ecoenv.2016.10.006.

    Article  Google Scholar 

  91. Zarfel G, Lipp M, Gürtl E, Folli B, Baumert R, Kittinger C. 2017. Troubled water under the bridge: screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Science of the Total Environment593-594: 399–405, https://doi.org/10.1016/j.scitotenv.2017.03.138.

    Article  Google Scholar 

  92. Zhang R J, Tang J H, Li J, Zheng Q, Liu D, Chen Y J, Zou Y D, Chen X X, Luo C L, Zhang G. 2013. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: occurrence, distribution and ecological risks. Environmental Pollution174: 71–77, https://doi.org/10.1016/j.envpol.2012.11.008.

    Article  Google Scholar 

  93. Zhang R J, Zhang G, Zheng Q, Tang J H, Chen Y J, Xu W H, Zou Y D, Chen X X.2012. Occurrence and risks of antibiotics in the Laizhou Bay, China: impacts of river discharge. Ecotoxicology and Environmental Safety80: 208–215, https://doi.org/10.1016/j.ecoenv.2012.03.002.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chuiwei Bong.

Additional information

Supported by the Ministry of Higher Education of Malaysia (Nos. IOES-2014D, FP048-2013A, SF022-2013) and the University Malaya (Nos. RU009D-2015, PG309-2016A)

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Low, K., Chai, L., Lee, C. et al. Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-9246-y

Download citation

Keyword

  • antibiotic residues
  • prevalence
  • ecological risk
  • anthropogenic pollution
  • riverine
  • estuarine