Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana

Abstract

Microplastics pollution and seawater temperature rise have been the major environmental issues, threatening the survival and biodiversity of marine organisms. This study evaluated the combined effect of temperature and polystyrene microplastics (MP) on Artemia, a filter-feeding crustacean that is widely used for environmental toxicology studies. Brine shrimp Artemia franciscana were exposed to three MP concentrations (0, 0.2, and 2.0 mg/L) and three temperatures (22, 26, and 30 °C) for 14 d. In general, higher MP concentration and temperature led to a decreased survival rate and growth. Two-way ANOVA analysis indicated that the survival rate of Artemia was significantly impacted by both MP concentration and temperature (P<0.05), but there was no significant interaction between two factors (P>0.05). Growth of Artemia was significantly impacted by temperature (P<0.05), and with a significant interaction between two factors (P<0.05). Furthermore, the enzymatic activity, intestinal histological analyses, and immune gene expression were determined for Artemia reared at 30 °C with three MP concentrations (0, 0.2, and 2.0 mg/L). The results showed that 2.0 mg/L MP resulted in reduced Artemia intestinal microvilli and exfoliated epithelia cells, significantly increased acid phosphatase (ACP) activity (P<0.05) and immune-related gene ADRA1B and CREB3 expression, revealing that higher MP concentration could induce oxidative and immunological stress on Artemia at 30 °C. Overall, our study suggests that MP and temperature have combined adverse effect on Artemia, especially at relatively high temperature and polystyrene MP concentration. These findings are important to understand the potential ecological risks posed by these two factors on the organisms in marine environment.

This is a preview of subscription content, access via your institution.

References

  1. Andrady A L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8): 1 596–1 605, https://doi.org/10.1016/j.marpolbul.2011.05.030.

    Article  Google Scholar 

  2. Bagnyukova T V, Vasylkiv O Y, Storey K B, Lushchak V I. 2005. Catalase inhibition by amino triazole induces oxidative stress in goldfish brain. Brain Research, 1052(2): 180–186, https://doi.org/10.1016/j.brainres.2005.06.002.

    Article  Google Scholar 

  3. Bakir A, O’Connor I A, Rowland S J, Hendriks A J, Thompson R C. 2016. Relative importance of microplastics as a pathway for the transfer of hydrophobic organic chemicals to marine life. Environmental Pollution, 219: 56–65, https://doi.org/10.1016/j.envpol.2016.09.046.

    Article  Google Scholar 

  4. Barber B J, Blake N J. 2006. Reproductive physiology. In: Shumway S E, Parsons G J eds. Scallops: Biology, Ecology and Aquaculture. Elsevier, Amsterdam. 59pp, https://doi.org/10.1016/S0167-9309(06)80033-5.

    Google Scholar 

  5. Barboza L G A, Vieira L R, Branco V, Figueiredo N, Carvalho F, Carvalho C, Guilhermino L. 2018a. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquatic Toxicology, 195: 49–57, https://doi.org/10.1016/j.aquatox.2017.12.008.

    Article  Google Scholar 

  6. Barboza L G A, Vieira L R, Guilhermino L. 2018b. Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioural responses and reduction of swimming velocity and resistance time. Environmental Pollution, 236: 1 014–1 019, https://doi.org/10.1016/j.envpol.2017.12.082.

    Article  Google Scholar 

  7. Batel A, Linti F, Scherer M, Erdinger L, Braunbeck T. 2016. Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. Environmental Toxicology and Chemistry, 35(7): 1 656–1 666, https://doi.org/10.1002/etc.3361.

    Article  Google Scholar 

  8. Bergami E, Pugnalini S, Vannuccini M L, Manfra L, Faleri C, Savorelli F, Dawson K A, Corsi I. 2017. Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana. Aquatic Toxicology, 189: 159–169, https://doi.org/10.1016/j.aquatox.2017.06.008.

    Article  Google Scholar 

  9. Besseling E, Wang B, Lürling M, Koelmans A A. 2014. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environmental Science & Technology, 48(20): 12 336–12 343, https://doi.org/10.1021/es503001d.

    Article  Google Scholar 

  10. Bhuvaneshwari M, Thiagarajan V, Nemade P, Chandrasekaran N, Mukherjee A. 2018. Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina effect of dietary and waterborne exposure. Environmental Research, 160: 39–46, https://doi.org/10.1016/j.envres.2017.09.022.

    Article  Google Scholar 

  11. Brierley A S, Kingsford M J. 2009. Impacts of climate change on marine organisms and ecosystems. Current Biology, 19(14): R602–R614, https://doi.org/10.1016/j.cub.2009.05.046.

    Article  Google Scholar 

  12. Browne M A, Dissanayake A, Galloway T S, Lowe D M, Thompson R C. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42(13): 5 026–5 031, https://doi.org/10.1021/es800249a.

    Article  Google Scholar 

  13. Browne R A, Wanigasekera G. 2000. Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology, 244(1): 29–44, https://doi.org/10.1016/S0022-0981(99)00125-2.

    Article  Google Scholar 

  14. Chen W H, Ge X M, Wang W W, Yu J, Hu S N. 2009. A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics, 10: 52, https://doi.org/10.1186/1471-2164-10-52.

    Article  Google Scholar 

  15. Cole M, Lindeque P K, Fileman E, Clark J, Lewis C, Halsband C, Galloway T S. 2016. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environmental Science & Technology, 50(6): 3 239–3 246, https://doi.org/10.1021/acs.est.5b05905.

    Article  Google Scholar 

  16. Cole M, Lindeque P, Fileman E, Halsband C, Galloway T S. 2015. The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environmental Science & Technology, 49(2): 1 130–1 137, https://doi.org/10.1021/es504525u.

    Article  Google Scholar 

  17. Crain C M, Kroeker K, Halpern B S. 2008. Interactive and cumulative effects of multiple human stressors in marine systems. Ecology Letters, 11(12): 1 304–1 315, https://doi.org/10.1111/j.1461-0248.2008.01253.x.

    Article  Google Scholar 

  18. Ekonomou G, Lolas A, Castritsi-Catharios J, Neofitou C, Zouganelis G D, Tsiropoulos N, Exadactylos A. 2019. Mortality and effect on growth of Artemia franciscana exposed to two common organic pollutants. Water, 11(8): 1614, https://doi.org/10.3390/w11081614.

    Article  Google Scholar 

  19. Eriksen M, Lebreton L C M, Carson H S, Thiel M, Moore C J, Borerro J C, Galgani F, Ryan P G, Reisser J. 2014. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at Sea. PLoS One, 9(12): e111913, https://doi.org/10.1371/journal.pone.0111913.

    Article  Google Scholar 

  20. Gunasekara R A Y S A, Rekecki A, Cornillie P, Cornelissen M, Sorgeloos P, Simoens P, Bossier P, Van den Broeck W. 2011. Morphological characteristics of the digestive tract of gnotobiotic Artemia franciscana nauplii. Aquaculture, 321(1–2): 1–7, https://doi.org/10.1016/j.aquaculture.2011.07.037.

    Article  Google Scholar 

  21. Hou L, Wang Y, Zou X Y. 2000. Expression characterizations of alkaline phosphatase (ALP) and acid phosphatase (ACP) isozymic genes of bisexual Artemia populations from China. Donghai Marine Science, 18(4): 22–28. (in Chinese)

    Google Scholar 

  22. Ighodaro O M, Akinloye O A. 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287–293, https://doi.org/10.1016/j.ajme.2017.09.001.

    Article  Google Scholar 

  23. Irwin S, Wall V, Davenport J. 2007. Measurement of temperature and salinity effects on oxygen consumption of Artemia franciscana K., measured using fibre-optic oxygen microsensors. Hydrobiologia, 575: 109–115, https://doi.org/10.1007/s10750-006-0358-y.

    Article  Google Scholar 

  24. Jabeen K, Su L, Li J N, Yang D Q, Tong C F, Mu J L, Shi H H. 2017. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221: 141–149, https://doi.org/10.1016/j.envpol.2016.11.055.

    Article  Google Scholar 

  25. Jambeck J R, Geyer R, Wilcox C, Siegler T R, Perryman M, Andrady A, Narayan R, Law K L. 2015. Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771, https://doi.org/10.1126/science.1260352.

    Article  Google Scholar 

  26. Jemec A, Horvat P, Kunej U, Bele M, Kržan A. 2016. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environmental Pollution, 219: 201–209, https://doi.org/10.1016/j.envpol.2016.10.037.

    Article  Google Scholar 

  27. Jeong C B, Won E J, Kang H M, Lee M C, Hwang D S, Hwang U K, Zhou B S, Souissi S, Lee S J, Lee J S. 2016. Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the Monogonont rotifer (Brachionus koreanus). Environmental Science & Technology, 50(16): 8 849–8 857, https://doi.org/10.1021/acs.est.6b01441.

    Article  Google Scholar 

  28. Kiss T. 2010. Apoptosis and its functional significance in molluscs. Apoptosis, 15(3): 313–321, https://doi.org/10.1007/s10495-009-0446-3.

    Article  Google Scholar 

  29. Lavens P, Sorgeloos P. 1996. Manual on the Production and Use of Live Food for Aquaculture. FAO, Rome, 172p.

    Google Scholar 

  30. Lee K W, Shim W J, Kwon O Y, Kang J H. 2013. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology, 47(19): 11 278–11 283, https://doi.org/10.1021/es401932b.

    Article  Google Scholar 

  31. Li J N, Green C, Reynolds A, Shi H H, Rotchell J M. 2018. Microplastics in mussels sampled from coastal waters and supermarkets in the United Kingdom. Environmental Pollution, 241: 35–44, https://doi.org/10.1016/j.envpol.2018.05.038.

    Article  Google Scholar 

  32. Lusher A. 2015. Microplastics in the marine environment: distribution, interactions and effects. In: Bergmann M, Gutow L, Klages M eds. Marine Anthropogenic Litter. Springer, Cham. p.245–307, https://doi.org/10.1007/978-3-319-16510-3_10.

    Google Scholar 

  33. Manfra L, Savorelli F, Di Lorenzo B, Libralato G, Comin S, Conti D, Floris B, Francese M, Gallo M L, Gartner I, Guida M, Leoni T, Marino G, Martelli F, Palazzi D, Prato E, Righini P, Rossi E, Volpi G A, Migliore L. 2015. Intercalibration of ecotoxicity testing protocols with Artemia franciscana. Ecological Indicators, 57: 41–47, https://doi.org/10.1016/j.ecolind.2015.04.021.

    Article  Google Scholar 

  34. Martins A, Guilhermino L. 2018. Transgenerational effects and recovery of microplastics exposure in model populations of the freshwater cladoceran Daphnia magna Straus. Science of the Total Environment, 631–632: 421–428, https://doi.org/10.1016/j.scitotenv.2018.03.054.

    Article  Google Scholar 

  35. Minetto D, Libralato G, Marcomini A, Volpi Ghirardini A. 2017. Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Science of the Total Environment, 579: 1 379–1 386, https://doi.org/10.1016/j.scitotenv.2016.11.135.

    Article  Google Scholar 

  36. Pampanin D M, Loriano B, Carotenuto L, Marin M G. 2002. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 131(3): 605–614, https://doi.org/10.1016/S1095-6433(01)00512-8.

    Article  Google Scholar 

  37. Peixoto D, Amorim J, Pinheiro C, Oliva-Teles L, Varó I, Rocha R D M, Vieira M N. 2019. Uptake and effects of different concentrations of spherical polymer microparticles on Artemia franciscana. Ecotoxicology and Environmental Safety, 176: 211–218, https://doi.org/10.1016/j.ecoenv.2019.03.100.

    Article  Google Scholar 

  38. Ping C C, Hang K K, Yan J D. 2011. CREB3 subfamily transcription factors are not created equal: recent insights from global analyses and animal models. Cell & Bioscience, 1(1): 6, https://doi.org/10.1186/2045-3701-1-6.

    Article  Google Scholar 

  39. Place S P, O’Donnell M J, Hofmann G E. 2008. Gene expression in the intertidal mussel Mytilus californianus: physiological response to environmental factors on a biogeographic scale. Marine Ecology Progress Series, 356: 1–14, https://doi.org/10.3354/meps07354.

    Article  Google Scholar 

  40. PlasticsEurope. 2017. An analysis of European plastics production, demand and waste data. Plastics Europe Association of Plastics Manufacturers, Brussels, Belgium. 44p, https://www.plasticseurope.org/application/files/1715/2111/1527/Plastics_the_facts_2017_FINAL_for_website.pdf.

  41. Rajalakshmi S, Mohandas A. 2005. Copper-induced changes in tissue enzyme activity in a freshwater mussel. Ecotoxicology and Environmental Safety, 62(1): 140–143, https://doi.org/10.1016/j.ecoenv.2005.01.003.

    Article  Google Scholar 

  42. Rodd A L, Creighton M A, Vaslet C A, Rangel-Mendez J R, Hurt R H, Kane A B. 2014. Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environmental Science & Technology, 48(11): 6 419–6 427, https://doi.org/10.1021/es500892m.

    Article  Google Scholar 

  43. Rotini A, Gallo A, Parlapiano I, Berducci M T, Boni R, Tosti E, Prato E, Maggi C, Cicero A M, Migliore L, Manfra L. 2018. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. Ecotoxicology and Environmental Safety, 147: 852–860, https://doi.org/10.1016/j.ecoenv.2017.09.053.

    Article  Google Scholar 

  44. Sarkheil M, Johari S A, An H J, Asghari S, Park H S, Sohn E K, Yu I J. 2018. Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environmental Toxicology and Pharmacology, 57: 181–188, https://doi.org/10.1016/j.etap.2017.12.018.

    Article  Google Scholar 

  45. Secretariat of the Convention on Biological Diversity and Scientific and Technical Advisory Panel GEF. 2012. Impacts of Marine Debris on Biodiversity: current status and potential solutions. Convention on Biological Diversity, Montreal. 61p.

  46. Shen J H, Zhou S F, Dong Y L, Cui Y L. 2007. Analysis on the status of surface temperature structure of the East China Sea and partial Yellow Sea in 2006. Marine Fisheries (in Chinese), 29(2): 179–185.

    Google Scholar 

  47. Tressel S L, Koukos G, Tchernychev B, Jacques S L, Covic L, Kuliopulos A. 2011. Pharmacology, biodistribution, and efficacy of GPCR-based pepducins in disease models. In: Langel Ü ed. Cell-Penetrating Peptides: Methods and Protocols. Humana Press, New York. p.259–275, https://doi.org/10.1007/978-1-60761-919-2_19.

    Google Scholar 

  48. Vannuccini M L, Grassi G, Leaver M J, Corsi I. 2015. Combination effects of nano-TiO2 and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on biotransformation gene expression in the liver of European sea bass Dicentrarchus labrax. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 176–177: 71–78, https://doi.org/10.1016/j.cbpc.2015.07.009.

    Google Scholar 

  49. Varó I, Perini A, Torreblanca A, Garcia Y, Bergami E, Vannuccini M L, Corsi I. 2019. Time-dependent effects of polystyrene nanoparticles in brine shrimp Artemia franciscana at physiological, biochemical and molecular levels. Science of the Total Environment, 675: 570–580, https://doi.org/10.1016/j.scitotenv.2019.04.157.

    Article  Google Scholar 

  50. Wang J D, Tan Z, Peng J P, Qiu Q X, Li M M. 2016. The behaviors of microplastics in the marine environment. Marine Environmental Research, 113: 7–17, https://doi.org/10.1016/j.marenvres.2015.10.014.

    Article  Google Scholar 

  51. Wang Y, Zhang D, Zhang M X, Mu J L, Ding G H, Mao Z, Cao Y F, Jin F, Cong Y, Wang L J, Zhang W W, Wang J Y. 2019. Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica. Environmental Pollution, 244: 715–722, https://doi.org/10.1016/j.envpol.2018.10.024.

    Article  Google Scholar 

  52. Wright S L, Thompson R C, Galloway T S. 2013. The physical impacts of microplastics on marine organisms: a review. Environmental Pollution, 178: 483–492, https://doi.org/10.1016/j.envpol.2013.02.031.

    Article  Google Scholar 

  53. Zhang Y L, Wang D, Zhang Z, Wang Z P, Zhang D C, Yin H. 2018. Transcriptome analysis of Artemia sinica in response to Micrococcus lysodeikticus infection. Fish & Shellfish Immunology, 81: 92–98, https://doi.org/10.1016/j.fsi.2018.06.033.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liying Sui.

Additional information

Supported by the Science and Technology Project of Tianjin Municipal (No. 17ZXZYNC00060), the Yangtze Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R81), the National Science Foundation of Tianjin (No. 18JCQNJC78500), and the Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry (Tianjin University of Science & Technology), China (No. 201704)

Conflict of Interest

The authors confi rm that this article content has no confl ict of interest.

Data Availability Statement

The research data used in this study can be shared upon request.

Ethics Statement

The study protocol was approved by the Committee on the Ethics of Animal Experiments of Tianjin University of Science and Technology.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, X., Zheng, Y., Dai, C. et al. Effect of polystyrene microplastics and temperature on growth, intestinal histology and immune responses of brine shrimp Artemia franciscana. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0118-2

Download citation

Keywords

  • Artemia franciscana
  • combined effect
  • microplastics
  • temperature