Effects of iron and humic acid on competition between Microcystis aeruginosa and Scenedesmus obliquus revealed by HPLC analysis of pigments

Abstract

Iron is a vital micronutrient for growth of bloom-forming Microcystis aeruginosa and competition with other algae, and its availability is affected by humic acid. The effect of iron and humic acid on growth and competition between M. aeruginosa and Scenedesmus obliquus was assessed. The results showed the growth of M. aeruginosa and S. obliquus in mono-cultures was inhibited by humic acid at low iron concentrations (0.01 mg/L); the maximum inhibition ratios were 67.84% and 38.31%, respectively. The inhibition of humic acid on the two species was significantly alleviated when iron concentrations were 1.00 mg/L, with the maximum inhibition rate reduced to 5.82% for M. aeruginosa and to 23.06% for S. obliquus. S. obliquus was the dominant species in mixed cultures, and the mutual inhibition between M. aeruginosa and S. obliquus at low iron concentration was greater than that at high iron concentration. The inhibition of S. obliquus on M. aeruginosa was reduced at low iron concentrations; it increased at high iron concentrations, as concentrations of humic acid rose.

This is a preview of subscription content, log in to check access.

References

  1. Agirbas E, Feyzioglu A M, Kopuz U, Llewellyn C A. 2015. Phytoplankton community composition in the southeastern Black Sea determined with pigments measured by HPLC-CHEMTAX analyses and microscopy cell counts. Journal of the Marine Biological Association of the United Kingdom, 95 (1): 35–52, https://doi.org/10.1017/S0025315414001040.

    Article  Google Scholar 

  2. Alexova R, Fujii M, Birch D, Cheng J, Waite T D, Ferrari B C, Neilan B A. 2011. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environmental Microbiology, 4 (4): 13 4–1 064, https://doi.org/10.1111/j.1462-2920.2010.02412.x.

    Google Scholar 

  3. Andersen R A, Bidigare R R, Keller M D, Latasa M. 1996. A comparison of HPLC pigment signatures and electron microscopic observations for oligotrophic waters of the North Atlantic and Pacific Oceans. Deep Sea Research Part II: Topical Studies in Oceanography, 43 (2-3): 517–537, https://doi.org/10.1016/0967-0645(95)00095-X.

    Article  Google Scholar 

  4. Backer L C, McNeel S V, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson T B, Nierenberg K, Aubel M, LePrell R, Chapman A, Foss A, Corum S, Hill V R, Kieszak S M, Cheng Y S. 2010. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon, 55 (5): 909–921, https://doi.org/10.1016/j.toxicon.2009.07.006.

    Article  Google Scholar 

  5. Benderliev K M, Ivanova N I. 1994. High-affinity siderophoremediated iron-transport system in the green alga Scenedesmus incrassatulus. Planta, 193 (2): 163–166, https://doi.org/10.1007/BF00192525.

    Article  Google Scholar 

  6. Bidigare R R, Prezelin B B, Smith R C. 1992. Bio-optical models and the problems of scaling. In: Falkowski P G, Woodhead A D, Vivirito K, eds. Primary Productivity and Biogeochemical Cycles in the Sea. Boston: Springer. p.175–212, https://doi.org/10.1007/978-1-4899-0762-2_11.

    Google Scholar 

  7. Bittencourt-Oliveira M C, Chia M A, de Oliveira H S B, Araújo M K C, Molica R J R, Dias C T S. 2015. Allelopathic interactions between microcystin-producing and nonmicrocystin- producing cyanobacteria and green microalgae: implications for microcystins production. Journal of Applied Phycology, 27 (1): 275–284, https://doi.org/10.1007/s10811-014-0326-2.

    Article  Google Scholar 

  8. Boopathi T, Ki J S. 2014. Impact of environmental factors on the regulation of cyanotoxin production. Toxins, 7 (7): 6 7–1 951, https://doi.org/10.3390/toxins6071951.

    Google Scholar 

  9. Brand L E. 1991. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production. Limnology and Oceanography, 8 (8): 36 8–1 756, https://doi.org/10.4319/lo.1991.36.8.1756.

    Google Scholar 

  10. Brussaard C P D, Thyrhaug R, Marie D, Bratbak G. 1999. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). Journal of Phycology, 35 (5): 941–948, https://doi.org/10.1046/j.1529-8817.1999.3550941.x.

    Article  Google Scholar 

  11. Cao D J, Yue Y D, Huang X M, Wei M. 2004. Environmental quality assessment of Pb, Cu, Fe pollution in Chaohu Lake waters. China Environmental Science, 24 (4): 509–512. (in Chinese with English abstract)

    Google Scholar 

  12. Carey C C, Ibelings B W, Hoffmann E P, Hamilton D P, Brookes J D. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Research, 5 (5): 46 5–1 394, https://doi.org/10.1016/j.watres.2011.12.016.

    Google Scholar 

  13. Chu Z S, Jin X C, Iwami N, Inamori Y. 2007. The effect of temperature on growth characteristics and competitions of Microcystis aeruginosa and Oscillatoria mougeotii in a shallow, eutrophic lake simulator system. In: Qin B, Liu Z, Havens K eds. Eutrophication of Shallow Lakes with Special Reference to Lake Taihu, China. Dordrecht: Springer. p.217–223, https://doi.org/10.1007/978-1-4020-6158-5_24.

    Google Scholar 

  14. Duan H T, Ma R H, Xu X F, Kong F X, Zhang S X, Kong W J, Hao J Y, Shang L L. 2009. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environmental Science and Technology, 10 (10): 43 10–3 522, https://doi.org/10.1021/es8031852.

    Google Scholar 

  15. Efteland S P. 2004. The Effects of Iron on Growth and Physiology of the Cyanobacterium Microcystis aeruginosa. University of Tennessee, Knoxville.

    Google Scholar 

  16. Fujimoto N, Sudo R, Sugiura N, Inamori Y. 1997. Nutrientlimited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnology and Oceanography, 42 (2): 250–256, https://doi.org/10.4319/lo.1997.42.2.0250.

    Article  Google Scholar 

  17. Gieskes W W C, Kraay G W. 1983. Dominance of cryptophyceae during the phytoplankton spring bloom in the central North Sea detected by HPLC analysis of pigments. Marine Biology, 75 (2-3): 179–185, https://doi.org/10.1007/BF00406000.

    Article  Google Scholar 

  18. Guillard R R L, Murphy L S, Foss P, Liaaen-Jensen S. 1985. Synechococcus spp. as likely zeaxanthin-dominant ultraphytoplankton in the North Atlantic1. Limnology and Oceanography, 30 (2): 412–414, https://doi.org/10.4319/10.1985.30.2.0412.

    Article  Google Scholar 

  19. Hallegraeff G M, Jeffrey S W. 1984. Tropical phytoplankton species and pigments of continental shelf waters of North and North-West Australia. Marine Ecology Progress Series, 20 (1): 59–74, https://doi.org/10.3354/meps020059.

    Article  Google Scholar 

  20. Hallegraeff G M. 1981. Seasonal study of phytoplankton pigments and species at a coastal station off Sydney: importance of diatoms and the nanoplankton. Marine Biology, 61 (2-3): 107–118, https://doi.org/10.1007/BF00386650.

    Article  Google Scholar 

  21. Ibelings B W, Backer L C, Kardinaal W E A, Chorus I. 2014. Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 40: 63–74, https://doi.org/10.1016/j.hal.2014.10.002.

    Article  Google Scholar 

  22. Imai A, Fukushima T, Matsushige K. 1999. Effects of iron limitation and aquatic humic substances on the growth of Microcystis aeruginosa. Canadian Journal of Fisheries and Aquatic Sciences, 10 (10): 56 10–1 929, https://doi.org/10.1139/f99-131.

    Google Scholar 

  23. Jeffrey S W, Hallegraeff G M. 1980. Studies of phytoplankton species and photosynthetic pigments in a warm core eddy of the East Australian Current. I. Summer population. Marine Ecology Progress Series, 3: 285–294, https://doi.org/10.3354/meps003285.

    Article  Google Scholar 

  24. Jeffrey S W, Hallegraeff G M. 1987. Phytoplankton pigments, species and light climate in a complex warm-core eddy of the East Australian Current. Deep - Sea Research Part A. Oceanographic Research Papers, 34 (5-6): 649–673, https://doi.org/10.1016/0198-0149(87)90029-X.

    Article  Google Scholar 

  25. Jeffrey S W. 1976. A report of green algal pigments in the central North Pacific Ocean. Marine Biology, 37 (1): 33–37, https://doi.org/10.1007/BF00386776.

    Article  Google Scholar 

  26. Kerndorff H, Schnitzer M. 1980. Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 11 (11): 44 11–1 701, https://doi.org/10.1016/0016-7037(80)90221-5.

    Google Scholar 

  27. Koh C H, Shin H C. 1990. Growth and size distribution of some large brown algae in Ohori, east coast of Korea. Hydrobiologia, 204 (1): 225–231, https://doi.org/10.1007/BF00040238.

    Article  Google Scholar 

  28. Kosakowska A, Lewandowska J, Ston J, Burkiewicz K. 2004. Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron. BioMetals, 17 (1): 45–52, https://doi.org/10.1023/A:1024452802005.

    Article  Google Scholar 

  29. Kuhn K M, Maurice P A, Neubauer E, Hofmann T, von der Kammer F. 2014. Accessibility of humic-associated Fe to a microbial siderophore: implications for bioavailability. Environmental Science & Technology, 2 (2): 48 2–1 015, https://doi.org/10.1021/es404186v.

    Google Scholar 

  30. Li H J, Murphy T, Guo J, Parr T, Nalewajko C. 2009. Ironstimulated growth and microcystin production of Microcystis novacekii UAM 250. Limnologica, 39 (3): 255–259, https://doi.org/10.1016/j.limno.2008.08.002.

    Article  Google Scholar 

  31. Llewellyn C A, Fishwick J R, Blackford J C. 2005. Phytoplankton community assemblage in the English Channel: a comparison using chlorophyll a derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. Journal of Plankton Research, 27 (1): 103–119, https://doi.org/10.1093/plankt/fbh158.

    Article  Google Scholar 

  32. Lürling M, Roessink I. 2006. On the way to cyanobacterial blooms: impact of the herbicide metribuzin on the competition between a green alga ( Scenedesmus ) and a cyanobacterium (Microcystis). Chemosphere, 65 (4): 618–626, https://doi.org/10.1016/j.chemosphere.2006.01.073.

    Article  Google Scholar 

  33. Lyck S, Gjølme N, Utkilen H. 1996. Iron starvation increases toxicity of Microcystis aeruginosa CYA 228/1 (Chroococcales, Cyanophyceae). Phycologia, 35 (S6): 120–124, https://doi.org/10.2216/i0031-8884-35-6S-120.1.

    Article  Google Scholar 

  34. Mackey D J, Higgins H W, Mackey M D, Holdsworth D. 1998. Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep - Sea Research Part I: Oceanographic Research Papers, 45 (9):nyealcourt: 1 441–1 468, https://doi.org/10.1016/S0967-0637(98)00025-9.

    Article  Google Scholar 

  35. Medrano E A, Uittenbogaard R E, Pires L M D, Van De Wiel B J H, Clercx H J H. 2013. Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecological Modelling, 248: 41–56, https://doi.org/10.1016/j.ecolmodel.2012.08.029.

    Article  Google Scholar 

  36. Meneely J P, Elliott C T. 2013. Microcystins: measuring human exposure and the impact on human health. Biomarkers, 18 (8): 639–649, https://doi.org/10.3109/1354750X.2013.841756.

    Article  Google Scholar 

  37. Millie D F, Paerl H W, Hurley J P. 1993. Microalgal pigment assessments using high-performance liquid chromatography: a synopsis of organismal and ecological applications. Canadian Journal of Fisheries and Aquatic Sciences, 11 (11): 50 11–2 513, https://doi.org/10.1139/f93-275.

    Google Scholar 

  38. Murphy T P, Lean D R, Nalewajko C. 1976. Blue-green algae: their excretion of iron-selective chelators enables them to dominate other algae. Science, 192 (4242): 900–902, https://doi.org/10.1126/science.818707.

    Article  Google Scholar 

  39. Nagai T, Imai A, Matsushige K, Fukushima T. 2007. Growth characteristics and growth modeling of Microcystis aeruginosa and Planktothrix agardhii under iron limitation. Limnology, 8 (3): 261–270, https://doi.org/10.1007/s10201-007-0217-1.

    Article  Google Scholar 

  40. Nielsen S L. 2006. Size-dependent growth rates in eukaryotic and prokaryotic algae exemplified by green algae and cyanobacteria: comparisons between unicells and colonial growth forms. Journal of Plankton Research, 28 (5): 489–498, https://doi.org/10.1093/plankt/fbi134.

    Article  Google Scholar 

  41. Rodriguez F, Varela M, Zapata M. 2002. Phytoplankton assemblages in the Gerlache and Bransfield Straits (Antarctic Peninsula) determined by light microscopy and CHEMTAX analysis of HPLC pigment data. Deep Sea Research Part II: Topical Studies in Oceanography, 49 (4-5): 723–747, https://doi.org/10.1016/S0967-0645(01)00121-7.

    Article  Google Scholar 

  42. Rueler J G, Ades D R. 1987. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). Journal of Phycology, 23 (3): 452–457, https://doi.org/10.1111/j.1529-8817.1987tb02531.x..

    Article  Google Scholar 

  43. Schlesinger D A, Molot L A, Shuter B J. 1981. Specific growth rates of freshwater algae in relation to cell size and light intensity. Canadian Journal of Fisheries and Aquatic Sciences, 9 (9): 38 9–1 052, https://doi.org/10.1139/f81-145.

    Google Scholar 

  44. Shen H, Niu Y, Xie P, Tao M, Yang X. 2011. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshwater Biology, 6 (6): 56 6–1 065, https://doi.org/10.1111/j.1365-2427.2010.02551.x.

    Google Scholar 

  45. Song K S, Shang Y X, Wen Z D, Jacinthe P A, Liu G, Lyu L, Fang C. 2019. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis. Water Research, 150: 403–417, https://doi.org/10.1016/j.watres.2018.12.004.

    Article  Google Scholar 

  46. Sun B K, Tanji Y, Unno H. 2005. Infl uences of iron and humic acid on the growth of the cyanobacterium Anabaena circinalis. Biochemical Engineering Journal, 24 (3): 195–201, https://doi.org/10.1016/j.bej.2005.02.014.

    Article  Google Scholar 

  47. Trainor F R. 1998. Biological aspects of Scenedesmus (Chlorophyceae)-phenotypic plasticity. In: Nova Hedwigia: Beihefte 117. Berlin: J. Cramer.

    Google Scholar 

  48. Verstreate D R, Storch T A, Dunham V L. 1980. A comparison of the infl uence of iron on the growth and nitrate metabolism of Anabaena and Scenedesmus. Physiologia Plantarum, 50 (1): 47–51, https://doi.org/10.1111/j.1399-3054.1980.tb02682.x.

    Article  Google Scholar 

  49. Volterra V. 1926. Fluctuations in the abundance of a species considered mathematically. Nature, 118 (2972): 558–560, https://doi.org/10.1038/118558a0.

    Article  Google Scholar 

  50. Wang Y W, Wu M, Yu J, Zhang J J, Zhang R F, Zhang L, Chen G X. 2014. Differences in growth, pigment composition and photosynthetic rates of two phenotypes Microcystis aeruginosa strains under high and low iron conditions. Biochemical Systematics and Ecology, 55: 112–117, https://doi.org/10.1016/j.bse.2014.02.019.

    Article  Google Scholar 

  51. Wilhelm C, Rudolph I, Renner W. 1991. A quantitative method based on HPLC-aided pigment analysis to monitor structure and dynamics of the phytoplankton assemblage-a study from Lake Meerfelder Maar (Eifel, Germany). Archiv Fur Hydrobiologie, 123 (1): 21–35.

    Google Scholar 

  52. Wright S W, Thomas D P, Marchant H J, Higgins H W, Mackey M D, Mackey D J. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the ‘CHEMTAX’ matrix factorisation program. Marine Ecology Progress Series, 144: 285–298, https://doi.org/10.3354/meps144285.

    Article  Google Scholar 

  53. Xie L Q, Xie P, Li S X, Tang H J, Liu H. 2003. The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Research, 9 (9): 37 9–2 073, https://doi.org/10.1016/S0043-1354(02)00532-8.

    Google Scholar 

  54. Xing W, Huang W M, Li D H, Liu Y D. 2007. Effects of iron on growth, pigment content, photosystem II efficiency, and siderophores production of Microcystis aeruginosa and Microcystis wesenbergii. Current Microbiology, 55 (2): 94–98, https://doi.org/10.1007/s00284-006-0470-2.

    Article  Google Scholar 

  55. Xu H, Zhu G W, Qin B Q, Paerl H W. 2013. Growth response of Microcystis spp. to iron enrichment in different regions of Lake Taihu, China. Hydrobiologia, 700 (1): 187–202, https://doi.org/10.1007/s10750-012-1229-3.

    Article  Google Scholar 

  56. Yu G Y, Zhang X H, Liang X M, Xu X Q. 2000. Biogeochemical characteristics of metal elements in water-plant system of lake Dianchi. Acta Hydrobiologica Sinica, 24 (2): 172–177, https://doi.org/10.3321/j.issn:1000-3207.2000.02.012. (in Chinese with English abstract)

    Google Scholar 

  57. Zhang P, Zhai C M, Wang X X, Liu C H, Jiang J H, Xue Y R. 2013. Growth competition between Microcystis aeruginosa and Quadrigula chodatii under controlled conditions. Journal of Applied Phycology, 25 (2): 555–565, https://doi.org/10.1007/s10811-012-9890-5.

    Article  Google Scholar 

  58. Zhang Z P, Zhu G W, Sun X J, Chi Q Q. 2008. Seasonal variation of colloidal trace-metal concentration in Lake Taihu water body. China Environmental Science, 28 (6): 556–560. (in Chinese with English abstract)

    Google Scholar 

  59. Zhou T, Wang Z H, Hu Q, Liu L F, Luo K S. 2016. Effects of Fe2+ and Fe3+ on algal proliferation in a natural mixed algal colony in algae-rich raw water in Southern China. Journal of Residuals Science & Technology, 13 (1): 15–22, https://doi.org/10.12783/issn.1544-8053/13/1/3.

    Article  Google Scholar 

  60. Zhu W, Chen H M, Guo L L, Li M. 2016. Effects of linear alkylbenzene sulfonate (LAS) on the interspecific competition between Microcystis and Scenedesmus. Environmental Science and Pollution Research, 16 (16): 23 16–16 194, https://doi.org/10.1007/s11356-016-6809-8.

    Google Scholar 

Download references

Acknowledgment

We thank Elaine Monaghan, BSc (Econ), from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of draft of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

Supported by the Sichuan Science and Technology Program (No. 2019YFH0127), the Joint Foundation of Shaanxi (No. 2019JLM-59), the Scientifi c and Technological Innovation Team of Water Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province (No. 17454)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., He, Q., Chen, C. et al. Effects of iron and humic acid on competition between Microcystis aeruginosa and Scenedesmus obliquus revealed by HPLC analysis of pigments. J. Ocean. Limnol. (2020). https://doi.org/10.1007/s00343-020-0012-y

Download citation

Keywords

  • Microcystis
  • Scenedesmus
  • iron
  • humic acid
  • competition
  • pigment