Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity

Abstract

Phenol is a common industrial chemical produced and transported worldwide largely. Therefore, accidental spillage of phenol in the ocean causes an increasing concern. Microalgae are promising to remove phenol from marine waters. However, temperature and light intensity are two main factors that markedly influence biodegradation in marine environments. In this study, a marine golden alga Isochrysis galbana is selected to research the removal of phenol under different temperatures (10–30°C) and light intensities (0–240 µmol/(m2·s)). The results show that the most suitable temperature and light intensity for phenol removal are 20°C and 180 µmol/(m2·s), respectively, and 100 mg/L of phenol can be completely removed by microalga in 24 h at these conditions. I. galbana can also remove phenol under dark and low-temperature conditions. The removal of phenol by I. galbana at diverse temperatures and light intensities conform to first-order kinetics, and the process under dark conditions conform to zero-order kinetics. Thus, I. galbana can be used in the in-situ bioremediation of polluted seawater by phenol.

This is a preview of subscription content, access via your institution.

Data Availability Statement

The data generated or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Alkhamis Y, Qin J G. 2013. Cultivation of Isochrysis galbana in phototrophic, heterotrophic, and mixotrophic conditions. BioMed. Res. Int., 2013: 983 465, https://doi.org/10.1155/2013/983465.

    Article  Google Scholar 

  2. Andersen G S, Pedersen M F, Nielsen S L. 2013. Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J. Phycol., 49(4): 689–700.

    Article  Google Scholar 

  3. Bradley P M, Writer J H. 2014. Effect of light on biodegradation of estrone, 17β-estradiol, and 17α-ethinylestradiol in stream sediment. J. Am. Water Resour. Assoc., 50(2): 334–342.

    Article  Google Scholar 

  4. Calabrese E J, Kenyon E M. 1991. Air Toxics and Risk Assessment. Lewis Publishers, Chelsea.

    Google Scholar 

  5. Caracciolo A B, Topp E, Grenni P. 2015. Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. A review. J. Pharm. Biomed. Anal., 106: 25–36.

    Article  Google Scholar 

  6. Cunha I, Moreira S, Santos M M. 2015. Review on hazardous and noxious substances (HNS) involved in marine spill incidents—An online database. J. Hazard. Mater., 285: 509–516.

    Article  Google Scholar 

  7. Di Caprio F, Scarponi P, Altimari P, Iaquaniello G, Pagnanelli F. 2018. The influence of phenols extracted from olive mill wastewater on the heterotrophic and mixotrophic growth of Scenedesmus sp. J. Chem. Technol. Biotechnol., 93(12): 3 619–3 626.

    Article  Google Scholar 

  8. Du W, Zhao F Q, Zeng B Z. 2009. Novel multiwalled carbon nanotubes-polyaniline composite film coated platinum wire for headspace solid-phase microextraction and gas chromatographic determination of phenolic compounds. J. Chromatogr. A., 1216(18): 3 751–3 757.

    Article  Google Scholar 

  9. Duan W Y, Meng F P, Cui H W, Lin Y F, Wang G S, Wu J Y. 2018. Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol. Environ. Saf., 157: 441–456.

    Article  Google Scholar 

  10. Duan W Y, Meng F P, Lin Y F, Wang G S. 2017. Toxicological effects of phenol on four marine microalgae. Environ. Toxicol. Pharmacol., 52: 170–176.

    Article  Google Scholar 

  11. Emerson E. 1943. The condensation of aminoantipyrine. II. A new color test for phenolic compounds. J. Org. Chem., 8(5): 417–428.

    Article  Google Scholar 

  12. French McCay D P, Whittier N, Ward M, Santos C. 2006. Spill hazard evaluation for chemicals shipped in bulk using modeling. Environ. Modell. Softw., 21(2): 156–169.

    Article  Google Scholar 

  13. Gao J, Chi J. 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Mar. Pollut. Bull., 99(1–2): 70–75.

    Article  Google Scholar 

  14. Gao Q T, Wong Y S, Tam N F Y. 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Mar. Pollut. Bull., 63(5–12): 445–451.

    Article  Google Scholar 

  15. Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Springer, Boston. p.29–60.

    Chapter  Google Scholar 

  16. HELCOM. 2002. Response to Accidents at Sea Involving Spills of Hazardous Substances and Loss of Packaged Dangerous Goods. Baltic Marine Environment Protection Commission, Helsinki, Finland.

    Google Scholar 

  17. Lima S A C, Raposo M F J, Castro P M L, Morais R M. 2004. Biodegradation of p-chlorophenol by a microalgae consortium. Water Res., 38(1): 97–102.

    Article  Google Scholar 

  18. Liu M J, Fu Q, Fu H L, Shu G, Zhang W, Deng F Y, Hu J. 2014. A new kinetic approach. Stability of cefquinome sulfate under variable pH and temperature. Indian J. Pharm. Educ. Res., 48(S1): 27–33.

    Article  Google Scholar 

  19. Lu Y, Yan L H, Wang Y, Zhou S F, Fu J J, Zhang J F. 2009. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J. Hazard. Mater., 165(1–3): 1 091–1 097.

    Article  Google Scholar 

  20. Matamoros V, Gutiérrez R, Ferrer I, García J, Bayona J M. 2015. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J. Hazard. Mater., 288: 34–42.

    Article  Google Scholar 

  21. Massalha N, Shaviv A, Sabbah I. 2010. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions. Water Res., 44(18): 5 252–5 259.

    Article  Google Scholar 

  22. Nazos T T, Kokarakis E J, Ghanotakis D F. 2017. Metabolism of xenobiotics by Chlamydomonas reinhardtii: phenol degradation under conditions affecting photosynthesis. Photosynth. Res., 131(1): 31–40.

    Article  Google Scholar 

  23. Onysko K A, Budman H M, Robinson C W. 2000. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol. Bioeng., 70(3): 291–299.

    Article  Google Scholar 

  24. Perez-Garcia O, Escalante F M E, De-Bashan L E, Bashan Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res., 45(1): 11–36.

    Article  Google Scholar 

  25. Polymenakou P N, Stephanou E G. 2005. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation, 16(5): 403–413.

    Article  Google Scholar 

  26. Raven J A, Geider R J. 1988. Temperature and algal growth. New Phytol., 110(4): 441–461.

    Article  Google Scholar 

  27. Saravanan P, Pakshirajan K, Saha P. 2009. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J. Hazard. Mater., 162(1): 476–481.

    Article  Google Scholar 

  28. Senthilvelan T, Kanagaraj J, Panda R C, Mandal A B. 2014. Biodegradation of phenol by mixed microbial culture: an eco-friendly approach for the pollution reduction. Clean. Technol. Environ. Policy, 16(1): 113–126.

    Article  Google Scholar 

  29. Siddiqui K S. 2015. Some like it hot, some like it cold: temperature dependent biotechnological applications and improvements in extremophilic enzymes. Biotechnol. Adv., 33(8): 1 912–1 922.

    Article  Google Scholar 

  30. Silambarasan S, Abraham J. 2013. Kinetic studies on enhancement of degradation of chlorpyrifos and its hydrolyzing metabolite TCP by a newly isolated Alcaligenes sp. JAS1. J. Taiwan Inst. Chem. Eng., 44(3): 438–445.

    Article  Google Scholar 

  31. Sinkkonen S, Paasivirta J. 2000. Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere, 40(9–11): 943–949.

    Article  Google Scholar 

  32. Song C F, Wei Y L, Qiu Y T, Qi Y, Li Y, Kitamura Y. 2019. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: experimental study. Bioresour. Technol., 272: 529–534.

    Google Scholar 

  33. Surkatti R, El-Naas M H. 2018. Competitive interference during the biodegradation of cresols. Int. J. Environ. Sci. Technol., 15(2): 301–308.

    Article  Google Scholar 

  34. Thakurta S G, Aakula M, Chakrabarty J, Dutta S. 2018. Bioremediation of phenol from synthetic and real wastewater using Leptolyngbya sp.: a comparison and assessment of lipid production. 3 Biotech, 8(4): 206.

    Article  Google Scholar 

  35. Wan S G, Li G Y, An T C, Guo B, Sun L, Zu L, Ren A L. 2010. Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation, 21(6): 1 057–1 066.

    Article  Google Scholar 

  36. Wang T, Xu Z Y, Wu L G, Li B R, Chen M X, Xue S Y, Zhu Y C, Cai J. 2017b. Enhanced photocatalytic activity for degrading phenol in seawater by TiO2-based catalysts under weak light irradiation. RSC Adv., 7(51): 31 921–31 929.

    Article  Google Scholar 

  37. Wang X Q, Wang Q L, Li S J, Li W. 2015. Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. J. Hazard. Mater., 288: 17–24.

    Article  Google Scholar 

  38. Wang Y J, Meng F P, Li H, Zhao S L, Liu Q Q, Lin Y F, Wang G S, Wu J Y. 2019. Biodegradation of phenol by Isochrysis galbana screened from eight species of marine microalgae: growth kinetic models, enzyme analysis and biodegradation pathway. J. Appl. Phycol., 31(1): 445–455.

    Article  Google Scholar 

  39. Wang Y J, Meng F P, Lin Y F, Duan W Y, Liu Q Q. 2017a. Four types of attenuation of phenol and cresols in microcosms under simulated marine conditions: a kinetic study. Chemosphere, 185: 595–601.

    Article  Google Scholar 

  40. Wernberg T, Thomsen M S, Tuya F, Kendrick G A, Staehr P A, Toohey B D. 2010. Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol. Lett., 13(6): 685–694.

    Article  Google Scholar 

  41. Wijffels R H, Kruse O, Hellingwerf K J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotech., 24(3): 405–413.

    Article  Google Scholar 

  42. Xiong J Q, Kurade M B, Jeon B H. 2017. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J., 313: 1 251–1 257.

    Article  Google Scholar 

  43. Yang S, Wu R S S, Kong R Y C. 2002. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat. Toxicol., 59(3–4): 191–200.

    Article  Google Scholar 

  44. Zhou D D, Xu Z X, Dong S S, Huo M X, Dong S S, Tian X D, Cui B, Xiong H F, Li T T, Ma D M. 2015. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: visible light vs UV light. Environ. Sci. Technol., 49(13): 7 776–7 783.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fanping Meng.

Additional information

Supported by the National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People’s Republic of China through its Commissioned Research Scheme (No. 2018AA019)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Meng, F., Wang, Y. et al. Removal of phenol by Isochrysis galbana in seawater under varying temperature and light intensity. J. Ocean. Limnol. 38, 773–782 (2020). https://doi.org/10.1007/s00343-019-9125-6

Download citation

Keyword

  • phenol
  • Isochrysis galbana
  • temperature
  • light intensity
  • biodegradation