Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions

Abstract

Ocean acidification (OA) affects marine biodiversity and alters the structure and function of marine populations, communities, and ecosystems. Recently, effects of OA on the behavioral responses of marine animals have been given with much attention. While many of previous studies focuses on marine fish. Evidence suggests that marine invertebrate behaviors were also be affected. In this review, we discussed the effects of C02-driven OA on the most common behaviors studied in marine invertebrates, including settlement and habitat selection, feeding, anti-predatory, and swimming behaviors, and explored the related mechanisms behind behaviors. This review summarizes how OA affects marine invertebrate behavior, and provides new insights and highlights novel areas for future research.

This is a preview of subscription content, access via your institution.

Data Availability Statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Albright R, Langdon C. 2011. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides. Global Change Biol., 17(7): 2478–2487, https://doi.org/10.1111/j.1365-2486.2011.02404.x.

    Article  Google Scholar 

  2. Albright R, Mason B, Langdon C J. 2008. Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae. Coral Reefs, 27(3): 485–490, https://doi.org/10.1007/s00338-008-0392-5.

    Article  Google Scholar 

  3. Albright R, Mason B, Miller M, Langdon C. 2010. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acroporapalmata. Proc. Natl. Acad. Sci. USA, 107(47): 20400–20404, https://doi.org/10.1073/pnas.l007273107.

    Article  Google Scholar 

  4. Alenius B, Munguia P. 2012. Effects of pH variability on the intertidal isopod, Paradella dianae. Mar. Freshw. Behav. Physiol, 45(4): 245–259, https://doi.org/10.1080/10236244.2012.727235.

    Article  Google Scholar 

  5. Amaral V, Cabral H N, Bishop M J. 2012. Effects of estuarine acidification on predator-prey interactions. Mar. Ecol. Prog. Ser, 445: 117–127, https://doi.org/10.3354/meps09487.

    Article  Google Scholar 

  6. Anlauf H, D’Croz L, O’Dea A. 2011. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J. Exp. Mar. Biol. Ecol, 397(1): 13–20, https://doi.org/10.1016/j.jembe.2010.11.009.

    Article  Google Scholar 

  7. Appelhans Y S, Thomsen J, Opitz S, Pansch C, Melzner F, Wahl M. 2014. Juvenile sea stars exposed to acidification decrease feeding and growth with no acclimation potential. Mar. Ecol. Prog. Ser, 509: 227–239, https://doi.org/10.3354/mepsl0884.

    Article  Google Scholar 

  8. Appelhans Y S, Thomsen J, Pansch C, Melzner F, Wahl M. 2012. Sourtimes: seawater acidification effects on growth, feeding behaviour and acid-base status of Asterias rubens and Carcinus maenas. Mar. Ecol. Prog. Ser., 459: 85–98, https://doi.org/10.3354/meps09697.

    Article  Google Scholar 

  9. Ashur M M, Johnston N K, Dixson D L. 2017. Impacts of ocean acidification on sensory function in marine organisms. Integr. Comp. Biol., 57(1): 63–80, https://doi.org/10.1093/icb/icx010.

    Article  Google Scholar 

  10. Barry J P, Lovera C, Buck K R, Peltzer E T, Taylor J R, Walz P, Whaling P J, Brewer P G. 2014. Use of a free ocean CO2 enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin. Environ. Sci. Technoi, 48(16): 9890–9897, https://doi.org/10.1021/es501603r.

    Article  Google Scholar 

  11. Benítez S, Duarte C, Lopez J, Manríquez P H, Navarro J M, Bonta C C, Torres R, Quijón P A. 2016. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification. Mar. Pollut. Bull., 112(1-2): 375–379, https://doi.org/10.1016/j.marpolbul.2016.07.016.

    Article  Google Scholar 

  12. Benitez S, Lagos N A, Osores S, Opitz T, Duarte C, Navarro J M, Lardies M A. 2018. High/pCO2 levels affect metabolic rate, but not feeding behavior and fitness, of farmed giant mussel Choromytilus chorus. Aquae. Environ. Interact., 10: 267–278, https://doi.org/10.3354/aei00271.

    Article  Google Scholar 

  13. Bergan A J, Lawson G L, Maas A E, Wang Z A. 2017. The effect of elevated carbon dioxide on the sinking and swimming of the shelled pteropod Limacina retroversa. ICES J. Mar. Sci., 74(7): 1893–1905, https://doi.org/10.1093/icesjms/fsx008.

    Article  Google Scholar 

  14. Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J. 2007. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol. Lett., 3(6): 699–701, https://doi.org/10.1098/rsbl.2007.0457.

    Article  Google Scholar 

  15. Boron W F. 1987. Intracellular pH regulation. In: Andreoli T E, Hoffman J F, Fanestil D D, Schultz S G eds. Membrane Transport Processes in Organized Systems. Springer, Boston, MA. p.39–51, https://doi.org/10.1007/978-l-4684-5404-8_3.

    Chapter  Google Scholar 

  16. Brennand H S, Soars N, Dworjanyn S A, Davis A R, Byrne M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One, 5(6): e. 1372. https://doi.org/10.1371/journal.pone.0011372.

    Google Scholar 

  17. Briffa M, De La Haye K, Munday P L. 2012. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar. Pollut. Bull, 64(8): 1519–1528, https://doi.org/10.1016/j.marpolbul.2012.05.032.

    Article  Google Scholar 

  18. Burnell O W, Russell B D, Irving A D, Cornell S D. 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar. Ecol. Prog. Ser., 485: 37–46, https://doi.org/10.3354/mepsl0323.

    Article  Google Scholar 

  19. Caley M J, Carr M H, Hixon M A, Hughes T P, Jones G R Menge B A. 1996. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst., 27: 477–500, https://doi.org/10.1146/annurev.ecolsys.27.1.477.

    Article  Google Scholar 

  20. Carroll M A, Catapane E J, Molecular. 2007. The nervous system control of lateral ciliary activity of the gill of the bivalve mollusc, Crassostrea virginica. Comp. Biochem. Physiol. A: Mol. Integr. Physiol., 148(2): 445–450, https://doi.org/10.1016/j.cbpa.2007.06.003.

    Article  Google Scholar 

  21. Catapane E J, Nelson M, Adams T, Carroll M A. 2016. Innervation of gill lateral cells in the bivalve mollusc Crassostrea virginica affects cellular membrane potential and cilia activity. J. Pharmacol. Rep., 1(2): 109.

    Google Scholar 

  22. Catapane E J, Stefano G B, Aiello E. 1978. Pharmacological study of the reciprocal dual innervation of the lateral ciliated gill epithelium by the CNS of Mytilus edulis (Bivalvia). J. Exp. Biol, 74(1): 101–113.

    Google Scholar 

  23. Catapane E J, Stefano G B, Aiello E. 1979. Neurophysiological correlates of the dopaminergic cilio-inhibitory mechanism of Mytilus edulis. J. Exp. Biol., 83: 315–323.

    Google Scholar 

  24. Chan K Y K, García E, Dupont S. 2015. Acidification reduced growth rate but not swimming speed of larval sea urchins. Sci. Rep., 5: 9764, https://doi.org/10.1038/srep09764.

    Article  Google Scholar 

  25. Chan K Y K, Grünbaum D, Arnberg M, Dupont S. 2016. Impacts of ocean acidification on survival, growth, and swimming behaviours differ between larval urchins and brittlestars. ICES J. Mar. Sci., 73(3): 951–961, https://doi.org/10.1093/icesjms/fsv073.

    Article  Google Scholar 

  26. Chan K Y K, Grunbaum D, O’Donnell M J. 2011. Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J. Exp. Biol., 214(22): 3857–3867, https://doi.org/10.1242/jeb.054809.

    Article  Google Scholar 

  27. Charpentier C L, Cohen J H. 2016. Acidification and y-aminobutyric acid independently alter kairomone-induced behaviour. R. Soc. Open Sci., 3(9): 160–311, https://doi.org/10.1098/rsos.l60311.

    Article  Google Scholar 

  28. Chivers D P, McCormick M I, Nilsson G E, Munday P L, Watson S A, Meekan M G, Mitchell M D, Corkill K C, Ferrari M C O. 2014. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biol, 20(2): 515–522, https://doi.org/10.1111/gcb.12291.

    Article  Google Scholar 

  29. Christmas A M F. 2013. Effects of Ocean Acidification on Dispersal Behavior in the Larval Stage of the Dungeness Crab and the Pacific Green Shore Crab. Western Washington University, Bellingham.

    Google Scholar 

  30. Chung W S, Marshall N J, Watson S A, Munday P L, Nilsson G E. 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. J. Exp. Biol, 217(3): 323–326, https://doi.org/10.1242/jeb.092478.

    Article  Google Scholar 

  31. Cigliano M, Gambi M C, Rodolfo-Metalpa R, Patti F R Hall-Spencer J M. 2010. Effects of ocean acidification on invertebrate settlement at volcanic C02 vents. Mar. Biol, 157(11): 2489–2502, https://doi.org/10.1007/s00227-010-1513-6.

    Article  Google Scholar 

  32. Clements J C, Bishop M M, Hunt H L. 2017. Elevated temperature has adverse effects on GABA-mediated avoidance behaviour to sediment acidification in a wide-ranging marine bivalve. Mar. Biol, 164(3): 56, https://doi.org/10.1007/s00227-017-3085-1.

    Article  Google Scholar 

  33. Clements J C, Hunt H L. 2014. Influence of sediment acidification and water flow on sediment acceptance and dispersal of juvenile soft-shell clams (Mya arenaria L.). J. Exp. Mar. Biol. Ecol, 453: 62–69, https://doi.org/10.1016/j.jembe.2014.01.002.

    Article  Google Scholar 

  34. Clements J C, Hunt H L. 2015. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser., 536: 259–279, https://doi.org/10.3354/mepsll426.

    Article  Google Scholar 

  35. Clements J C, Hunt H L. 2017. Effects of CO2-driven sediment acidification on infaunal marine bivalves: a synthesis. Mar. Pollut. Bull., 117(1-2): 6–16, https://doi.org/10.1016/j.marpolbul.2017.01.053.

    Article  Google Scholar 

  36. De La Haye K L, Spicer J I, Widdicombe S, Briffa M. 2011. Reduced sea water pH disrupts resource assessment and decision making in the hermit crab Pagurus bernhardus. Anim. Behav., 82(3): 495–501, https://doi.org/10.1016/.anbehav.2011.05.030.

    Article  Google Scholar 

  37. De La Haye K L, Spicer J I, Widdicombe S, Briffa M. 2012. Reduced pH sea water disrupts chemo-responsive behaviour in an intertidal crustacean. J. Exp. Mar. Biol Ecol., 412: 134–140, https://doi.org/10.1016/j.jembe.2011.11.013.

    Article  Google Scholar 

  38. Devine B M, Munday P L, Jones G P. 2012. Rising CO2 concentrations affect settlement behaviour of larval damselfishes. Coral Reefs, 31(1): 229–238, https://doi.org/10.1007/s00338-011-0837-0.

    Article  Google Scholar 

  39. Dissanayake A, Ishimatsu A. 2011. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J. Mar. Sci., 68(6): 1147–1154, https://doi.org/10.1093/icesjms/fsql88.

    Article  Google Scholar 

  40. Domenici P, Torres R, Manriquez P H. 2017. Effects of elevated carbon dioxide and temperature on locomotion and the repeatability of lateralization in a keystone marine mollusc. J. Exp. Biol, 220(4): 667–676, https://doi.org/10.1242/jeb.l51779.

    Article  Google Scholar 

  41. Doropoulos C, Diaz-Pulido G. 2013. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae. Mar. Ecol. Prog. Ser, 475: 93–99, https://doi.org/10.3354/mepsl0096.

    Article  Google Scholar 

  42. Doropoulos C, Ward S, Diaz-Pulido G, Hoegh-Guldberg O, Mumby P J. 2012. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett., 15(4): 338–346, https://doi.org/10.1111/j.l461-0248.2012.01743.x.

    Article  Google Scholar 

  43. Duarte C, Lopez J, Benitez S, Manriquez P H, Navarro J M, Bonta C C, Torres R, Quijon P. 2016. Ocean acidification induces changes in algal palatability and herbivore feeding behavior and performance. Oecologia, 180(2): 453–462, https://doi.org/10.1007/s00442-015-3459-3.

    Article  Google Scholar 

  44. Dupont S T, Mercurio M, Giacoletti A, Rinaldi A, Mirto S, D’Acquisto L, Sabatino MA, Sara G. 2015. Functional consequences of prey acclimation to ocean acidification for the prey and its predator. PeerJ PrePr., 3: el438vl.

  45. Dupont S, Havenhand J, Thorndyke W, Peck L S, Thorndyke M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar. Ecol. Prog. Ser, 373: 285–294.

    Article  Google Scholar 

  46. Eads A R, Kennington W J, Evans J P. 2016. Interactive effects of ocean warming and acidification on sperm motility and fertilization in the mussel Mytilus galloprovincialis. Mar. Ecol. Prog. Ser., 562: 101–111, https://doi.org/10.3354/mepsll944.

    Article  Google Scholar 

  47. Elgeti J, Winkler R G, Gompper G. 2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys., 78(5). 056601. https://doi.org/10.1088/0034-4885/78/5/056601.

    Google Scholar 

  48. Ellis R P, Bersey J, Rundle S D, Hall-Spencer J M, Spicer J I. 2009. Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat. Biol., 5(1): 41–48, https://doi.org/10.3354/ab00118.

    Article  Google Scholar 

  49. Fabry V J, Seibel B A, Feely R A, Orr J C. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci., 65(3): 414–432, https://doi.org/10.1093/icesjms/fsn048.

    Article  Google Scholar 

  50. Ferrari M C O, McCormick M I, Munday P L, Meekan M G, Dixson D L, Lonnstedt O, Chivers D P. 2012. Effects of ocean acidification on visual risk assessment in coral reef fishes. FunctEcol, 26(3): 553–558, https://doi.org/10.1111/J.1365-2435.2011.01951.X.

    Article  Google Scholar 

  51. Garcia E, Clemente S, Carlos Hernández J. 2018. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement. Mar. Environ. Res., 139: 11–18, https://doi.org/10.1016/j.marenvres.2018.04.012.

    Article  Google Scholar 

  52. Glaspie C N, Longmire K, Seitz R D. 2017. Acidification alters predator-prey interactions of blue crab Callinectes sapidus and soft-shell clam Mya arenaria. J. Exp. Mar. Biol. Ecol, 489: 58–65, https://doi.org/10.1016/jjembe.2016.11.010.

    Article  Google Scholar 

  53. Gonzalez-Gurriarán E, Freire J, Bernardez C. 2002. Migratory patterns of female spider crabs Maja squinado detected using electronic tags and telemetry. J. Crustacean Biol, 22(1): 91–97, https://doi.org/10.1163/20021975-99990212.

    Article  Google Scholar 

  54. Gosselin L A, Qian P Y. 1997. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser., 146: 265–282, https://doi.org/10.3354/mepsl46265.

    Article  Google Scholar 

  55. Gray M W, Langdon C J, Waldbusser G G, Hales B, Kramer S. 2017. Mechanistic understanding of ocean acidification impacts on larval feeding physiology and energy budgets of the mussel Mytilus californianus. Mar. Ecol. Prog. Ser, 563: 81–94, https://doi.org/10.3354/mepsll977.

    Article  Google Scholar 

  56. Green M A, Waldbusser G G, Hubazc L, Cathcart E, Hall J. 2013. Carbonate mineral saturation state as the recruitment cue for settling bivalves in marine muds. Estuar. Coasts, 36(1): 18–27, https://doi.org/10.1007/sl2237-012-9549-0.

    Article  Google Scholar 

  57. Green M A, Waldbusser G G, Reilly S L, Emerson K, O’Donnell S. 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceanogr., 54(4): 1037–1047, https://doi.org/10.4319/10.2009.54.4.1037.

    Article  Google Scholar 

  58. Hamilton T J, Holcombe A, Tresguerres M. 2013. CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. Biol. Sci., 281(1775). 20132509. https://doi.org/10.1098/rspb.2013.2509.

    Google Scholar 

  59. Havenhand J N, Buttler F R, Thorndyke M C, Williamson J E. 2008. Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr. Biol, 18(15): R651–R652, https://doi.org/10.1016/j.cub.2008.06.015.

    Article  Google Scholar 

  60. Havenhand J N, Schlegel P. 2009. Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences, 6(12): 3009–3015, https://doi.org/10.5194/bg-6-3009-2009.

    Article  Google Scholar 

  61. Heuer R M, Grosell M. 2014. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. - Regul Integr. Comp. Physiol, 307(9): R1 061–R1 084, https://doi.org/10.1152/ajpregu.00064.2014.

    Article  Google Scholar 

  62. Huijbers C M, Nagelkerken I, Lössbroek P A C, Schulten I E, Siegenthaler A, Holderied M W, Simpson S D. 2012. A test of the senses: fish select novel habitats by responding to multiple cues. Ecology, 93(1): 46–55.

    Article  Google Scholar 

  63. Hunt H L, Scheibling R E. 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser, 155: 269–301, https://doi.org/10.3354/mepsl55269.

    Article  Google Scholar 

  64. Igulu M M, Nagelkerken, I, Beek, M V D, Schippers, M, Eck, R.V, Mgaya, Y D. 2013. Orientation from open water to settlement habitats by coral reef fish: behavioral flexibility in the use of multiple reliable cues. Mar. Ecol. Prog. Ser., 493: 243–257, https://doi.org/10.3354/mepsl0542.

    Article  Google Scholar 

  65. Igulu, M M, Nagelkerken, I, Fraaije, R, Hintum, R V, Ligtenberg, H, Mgaya, YD. 2011. The potential role of visual cues for microhabitat selection during the early life phase of a coral reef fish (Lutjanus fulviflamma). J. Exp. Mar. Biol. Ecol, 401: 118–125, https://doi.org/10.1016/).jembe.2011.01.022.

    Article  Google Scholar 

  66. Jellison B M, Ninokawa A T, Hill T M, Sanford E, Gay lord B. 2016. Ocean acidification alters the response of intertidal snails to a key sea star predator. Proc. Biol. Sci., 283(1833). 20160890. https://doi.org/10.1098/rspb.2016.0890.

    Google Scholar 

  67. lessen K R, Mirsky R, Dennison M E, Burnstock G. 1979. GABA may be a neurotransmitter in the vertebrate peripheral nervous system. Nature, 281(5726): 71–74, https://doi.org/10.1038/281071a0.

    Article  Google Scholar 

  68. Kim T W, Barry J P. 2016. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification. Ocean Sci. J., 51(3): 381–386, https://doi.org/10.1007/sl2601-016-0034-8.

    Article  Google Scholar 

  69. Kroeker K J, Kordas R L, Crim R N, Singh G G. 2010. Metaanalysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett., 13(11): 1419–1434, https://doi.org/10.1111/j.1461-0248.2010.01518.x.

    Article  Google Scholar 

  70. Kroeker K J, Kordas R L, Crim R, Hendriks I E, Ramajo L, Singh G S, Duarte C M, Gattuso J P. 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biol., 19(6): 1884–1896, https://doi.org/10.1111/gcb.12179.

    Article  Google Scholar 

  71. Kroeker K J, Sanford E, Jellison B M, Gaylord B. 2014. Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on coastal molluscs. Biol. Bull., 226(3): 211–222, https://doi.org/10.1086/BBLv226n3p211.

    Article  Google Scholar 

  72. Lai F, Jutfelt F, Nilsson G E. 2015. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol., 3(1): cov018, https://doi.org/10.1093/conphys/cov018.

    Google Scholar 

  73. Landes A, Zimmer M. 2012. Acidification and warming affect both a calcifying predator and prey, but not their interaction. Mar. Ecol. Prog. Ser, 450: 1–10, https://doi.org/10.3354/meps09666.

    Article  Google Scholar 

  74. Li L S, Lu W Q, Sui Y M, Wang Y J, Gul Y, Dupont S. 2015. Conflicting effects of predator cue and ocean acidification on the mussel Mytilus coruscus byssus production. J. ShellfishRes., 34(2): 393–400, https://doi.org/10.2983/035.034.0222.

    Article  Google Scholar 

  75. Li W, Gao K. 2012. A marine secondary producer respires and feeds more in a high CO2 ocean. Mar. Pollut. Bull., 64(4): 699–703, https://doi.org/10.1016/j.marpolbul.2012.01.033.

    Article  Google Scholar 

  76. Lohmann K J, Lohmann C M F, Endres C S. 2008. The sensory ecology of ocean navigation. J. Exp. Biol., 211(11): 1719–1728, https://doi.org/10.1242/jeb.015792.

    Article  Google Scholar 

  77. Lunt G G. 1991. GABA and GABA receptors in invertebrates. Semin. Neurosci., 3(3): 251–258, https://doi.org/10.1016/1044-5765(91)90022-G.

    Article  Google Scholar 

  78. Maboloc E A, Chan K Y K. 2017. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification. Sci. Rep., 7(1): 12062, https://doi.org/10.1038/s41598-017-12253-2.

    Google Scholar 

  79. Manriquez P H, Jara M E, Mardones M L, Navarro J M, Torres R, Lardies M A, Vargas C A, Duarte C, Widdicombe S, Salisbury J, Lagos N A. 2013. Ocean acidification disrupts prey responses to predator cues but not net prey shell growth in Concholepas concholepas (loco). PLoS One, 8(7): e68643.

    Google Scholar 

  80. Manriquez P H, Jara M E, Mardones M L, Torres R, Navarro J M, Lardies M A, Vargas C A, Duarte C, Lagos N A. 2014. Ocean acidification affects predator avoidance behaviour but not prey detection in the early ontogeny of a keystone species. Mar. Ecol. Prog. Ser., 502: 157–167, https://doi.org/10.3354/mepsl0703.

    Article  Google Scholar 

  81. Manriquez P H, Jara M E, Seguel M E, Torres R, Alarcon E, Lee M R. 2016. Ocean acidification and increased temperature have both positive and negative effects on early ontogenetic traits of a rocky shore keystone predator species. PLoS One, 11(3): e0151920, https://doi.org/10.1371/journal.pone.0151920.

    Google Scholar 

  82. Morse B, Rochette R. 2016. Movements and activity levels of juvenile American lobsters Homarus americanus in nature quantified using ultrasonic telemetry. Mar. Ecol. Prog. Ser, 551: 155–170, https://doi.org/10.3354/mepsll721.

    Article  Google Scholar 

  83. Nagelkerken I, Munday P L. 2016. Animal Behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Global Change Biol, 22(3): 974–989, https://doi.org/10.1111/gcb.l3167.

    Article  Google Scholar 

  84. Nakamura M, Ohki S, Suzuki A, Sakai K. 2011. Coral larvae under ocean acidification: survival, metabolism, and metamorphosis. PLoS One, 6(1): el4521, https://doi.org/10.1371/journal.pone.0014521.

    Google Scholar 

  85. Nilsson G E, Dixson D L, Domenici P, McCormick M I, Serensen C, Watson S A, Munday P L. 2012. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat. Clim. Change, 2(3): 201–204, https://doi.org/10.1038/nclimatel352.

    Article  Google Scholar 

  86. Ohman M D, Frost B W, Cohen E B. 1983. Reverse diel vertical migration: an escape from invertebrate predators. Science, 220(4604): 1404–1407, https://doi.org/10.1126/science.220.4604.1404.

    Article  Google Scholar 

  87. Ou M, Hamilton T J, Eom J, Lyall E M, Gallup J, Jiang A, Lee J, Close DA, Yun S S, Brauner C J. 2015. Responses of pink salmon to CO2-induced aquatic acidification. Nat. Clim. Change, 5(10): 950–955, https://doi.org/10.1038/nclimate2694.

    Article  Google Scholar 

  88. Pecquet A, Dorey N, Chan K Y K. 2017. Ocean acidification increases larval swimming speed and has limited effects on spawning and settlement of a robust fouling bryozoan, Bugula neritina. Mar. Pollut. Bull., 124(2): 903–910, https://doi.org/10.1016/j.marpolbul.2017.02.057.

    Article  Google Scholar 

  89. Peng C, Zhao X G, Liu S X, Shi W, Han Y, Guo C, Peng X, Chai X L, Liu G X. 2017. Ocean acidification alters the burrowing behaviour, Ca2+/Mg2+-ATPase activity, metabolism, and gene expression of a bivalve species, Sinonovacula constricta. Mar. Ecol. Prog. Ser., 575: 107–117, https://doi.org/10.3354/mepsl2224.

    Article  Google Scholar 

  90. Persons M H, Walker S E, Rypstra A L, Marshall S D. 2001. Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim. Behav., 61(1): 43–51, https://doi.org/10.1006/anbe.2000.1594.

    Article  Google Scholar 

  91. Pilditch C A, Valanko S, Norkko J, Norkko A. 2015. Post-settlement dispersal: the neglected link in maintenance of soft-sediment biodiversity. Biol. Lett., 11(2). 20140795. https://doi.org/10.1098/rsbl.2014.0795.

    Google Scholar 

  92. Queiros A M, Fernandes J A, Faulwetter S, Nunes J, Rastrick S P S, Meszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C, Findlay H S, Barange M, Cheung W W L, Widdicombe S. 2015. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Global Change Biol., 21(1): 130–143, https://doi.org/10.1111/gcb.12675.

    Article  Google Scholar 

  93. Quinn B K, Rochette R. 2015. Potential effect of variation in water temperature on development time of American lobster larvae. ICES J. Mar. Sci., 72(S1): i79–i90, https://doi.org/10.1093/icesjms/fsv010.

    Article  Google Scholar 

  94. Quinn B. 2014. Assessing Potential Influence of Larval Development Time and Drift on Large-scale Spatial Connectivity of American Lobster (Homarus americanus). University of New Brunswick, Fredericton and Saint John, NB.

    Google Scholar 

  95. Ren Z, Mu C, Li R, Song W, Wang C. 2018. Characterization of a γ-aminobutyrate type A receptor-associated protein gene, which is involved in the response of Portunus trituberculatus to CO2-induced ocean acidification. Aquat. Res., 49(7): 2393–2403, https://doi.org/10.1111/are.13699.

    Article  Google Scholar 

  96. Rodriguez S R, Ojeda F P, InestrosaN C. 1993. Settlement of benthic marine invertebrates. Mar. Ecol. Prog. Ser., 97: 193–207, https://doi.org/10.3354/meps097193.

    Article  Google Scholar 

  97. Roggatz C C, Lorch M, Hardege J D, Benoit D M. 2016. Ocean acidification affects marine chemical communication by changing structure and function of peptide signalling molecules. Global Change Biol., 22(12): 3914–3926, https://doi.org/10.1111/gcb.13354.

    Article  Google Scholar 

  98. Saba G K, Schofield O, Torres J J, Ombres E H, Steinberg D K. 2012. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS One, 7(12): e52224, https://doi.org/10.1371/journal.pone.0052224.

    Google Scholar 

  99. Sanford E, Gaylord B, Hettinger A, Lenz E A, Meyer K, Hill T M. 2014. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proc. Biol. Sci., 281(1778). 20132681. https://doi.org/10.1098/rspb.2013.2681.

    Google Scholar 

  100. Schalkhausser B, Bock C, Stemmer K, Brey T, Portner H O, Lannig G B. 2013. Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway. Mar. Biol, 160(8): 1995–2006, https://doi.org/10.1007/s00227-012-2057-8.

    Article  Google Scholar 

  101. Schlegel P, Binet M T, Havenhand J N, Doyle C J, Williamson J E. 2015. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol., 218(7): 1084–1090, https://doi.org/10.1242/jeb.114900.

    Article  Google Scholar 

  102. Schram J B, Schoenrock K M, McClintock J B, Amsler C D, Angus R A. 2017. Ocean warming and acidification alter Antarctic macroalgal biochemical composition but not amphipod grazer feeding preferences. Mar. Ecol. Prog. Ser., 581: 45–56, https://doi.org/10.3354/mepsl2308.

    Article  Google Scholar 

  103. Shi W, Han Y, Guo C, Zhao X G, Liu S X, Su W H, Wang Y C, Zha S J, Chai X L, Liu G X. 2017a. Ocean acidification hampers sperm-egg collisions, gamete fusion, and generation of Ca2+ oscillations of a broadcast spawning bivalve, Tegillarca granosa. Mar. Environ. Res., 130: 106–112, https://doi.org/10.1016/j.marenvres.2017.07.016.

    Article  Google Scholar 

  104. Shi W, Zhao X G, Han Y, Guo C, Liu S X, Su S H, Wang Y C, Zha S J, Chai X L, Fu W D, Yang H C, Liu G X. 2017b. Effects of reduced pH and elevated pCO2 on sperm motility and fertilisation success in blood clam, Tegillarca granosa. N. Z. J. Mar. Freshwater Res., 51(4): 543–554, https://doi.org/10.1080/00288330.2017.1296006.

    Article  Google Scholar 

  105. Sih A, Bell A, Johnson J C. 2004. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol., 19(7): 372–378, https://doi.org/10.1016/j.tree.2004.04.009.

    Article  Google Scholar 

  106. Smee D L, Weissburg M J. 2006. Hard clams (Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifics. J. Chem. Ecol, 32(3): 605–619, https://doi.org/10.1007/sl0886-005-9021-8.

    Article  Google Scholar 

  107. Spady B L, Munday P L, Watson S A. 2018. Predatory strategies and behaviours in cephalopods are altered by elevated CO2. Global Change Biol, 24(6): 2585–2596, https://doi.org/10.1111/gcb.14098.

    Article  Google Scholar 

  108. Spady B L, Watson S A, Chase T J, Munday P L. 2014. Projected near-future CO2 levels increase activity and alter defensive behaviours in the tropical squid Idiosepius pygmaeus. Biol. Open, 3(11): 1063–1070, https://doi.org/10.1242/bio.20149894.

    Article  Google Scholar 

  109. Sui Y M, Hu M H, Huang X Z, Wang Y J, Lu W Q. 2015. Anti-predatory responses of the thick shell mussel Mytilus coruscus exposed to seawater acidification and hypoxia. Mar. Environ. Res., 109: 159–167, https://doi.org/10.1016/j.marenvres.2015.07.008.

    Article  Google Scholar 

  110. Sui Y M, Liu Y M, Zhao X, Dupont S, Hu M H, Wu F L, Huang X Z, Li J L, Lu W Q, Wang Y J. 2017. Defense responses to short-term hypoxia and seawater acidification in the thick shell mussel Mytilus coruscus. Front. Physiol, 8: 145, https://doi.org/10.3389/fphys.2017.00145.

    Google Scholar 

  111. Sunday J M, Fabricius K E, Kroeker K J, Anderson K M, Brown N E, Barry J P, Connell S D, Dupont S, Gaylord B, Hall-Spencer J M, Klinger T, Milazzo M, Munday P L, Russell B D, Sanford E, Thiyagarajan V, Vaughan M L H, Widdicombe S, Harley C D G. 2017. Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nat. Clim. Change, 7(1): 81–85, https://doi.org/10.1038/NCLIMATE3161.

    Article  Google Scholar 

  112. Talmage S C, Gobler C J. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proc. Natl. Acad. Sci. USA, 107(40): 17246–17251, https://doi.org/10.1073/pnas.0913804107.

    Article  Google Scholar 

  113. Tierney A J, Atema T. 1988. Amino acid chemoreception: effects of pH on receptors and stimuli. J. Chem. Ecol, 14(1): 135–141, https://doi.org/10.1007/BF01022537.

    Article  Google Scholar 

  114. Uthicke S, Pecorino D, Albright R, Negri A P, Cantin N, Liddy M, Dworjanyn S, Kamya P, Byrne M, Lamare M. 2013. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One, 8(12): e82938, https://doi.org/10.1371/journal.pone.0082938.

    Google Scholar 

  115. Vargas C A, Aguilera V M, Martin V S, Manriquez P H, Navarro J M, Duarte C, Torres R, Lardies MA, Lagos N A. 2015. CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Estuar. Coasts, 38(4): 1163–1177.

    Article  Google Scholar 

  116. Vargas C A, De La Hoz M, Aguilera V, Martin V S, Manriquez P H, Navarro J M, Torres R, Lardies M A, Lagos N A. 2013. CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J. Plankton Res., 35(5): 1059–1068, https://doi.org/10.1093/plankt/fbt045.

    Article  Google Scholar 

  117. Vargas C A, Lagos N A, Lardies M A, Duarte C, Manriquez P H, Aguilera V M, Broitman B, Widdicombe S, Dupont S. 2017. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat.Ecol.Evol., 1(4): 84, https://doi.org/10.1038/s41559-017-0084.

    Article  Google Scholar 

  118. Viyakarn V, Lalitpattarakit W, Chinfak N, Jandang S, Kuanui P, Khokiattiwong S, Chavanich S. 2015. Effect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758). Ocean Sci. J.50(2): 475–480.

    Article  Google Scholar 

  119. Wang Y J, Hu M H, Wu F L, Starch D, Portner H O. 2018. Elevated pCO2 affects feeding behavior and acute physiological response of the brown crab Cancer pagurus. Front. Physiol, 9: 1164.

    Article  Google Scholar 

  120. Wang Y J, Li L S, Hu M H, Lu W Q. 2015. Physiological energetics of the thick shell mussel Mytilus coruscus exposed to seawater acidification and thermal stress. Sci. Total Environ., 514: 261–272, https://doi.org/10.1016/scitotenv.2015.01.092.

    Article  Google Scholar 

  121. Watson S A, Fields J B, Munday P L. 2017. Ocean acidification alters predator behaviour and reduces predation rate. Biol. Lett., 13(2). 20160797. https://doi.org/10.1098/rsbl.2016.0797.

    Google Scholar 

  122. Watson S A, Lefevre S, McCormick M I, Domenici P, Nilsson G E, Munday P L. 2014. Marine mollusc predator-escape behaviour altered by near-future carbon dioxide levels. Proc. Biol. Sci., 281(1774). 20132377. https://doi.org/10.1098/rspb.2013.2377.

    Google Scholar 

  123. Webster N S, Uthicke S, Botte E S, Flores F, Negri A P. 2013. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Global Change Biol., 19(1): 303–315, https://doi.org/10.1111/gcb.12008.

    Article  Google Scholar 

  124. Widdicombe S, Needham H R. 2007. Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar. Ecol. Prog. Ser., 341: 111–122, https://doi.org/10.3354/meps341111.

    Article  Google Scholar 

  125. Widdicombe S, Spicer J I. 2008. Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J. Exp. Mar. Biol. Ecol, 366(1-2): 187–197, https://doi.org/10.1016/j.jembe.2008.07.024.

    Article  Google Scholar 

  126. Wright J M, O’Connor W A, Parker L M, Ross P M. 2018a. Predation by the endemic whelk Tenguella marginalba (Blainville. 1832). on the invasive Pacific oyster Crassostrea gigas (Thunberg, 1793). Molluscan Res., 38(2): 130–136, https://doi.org/10.1080/13235818.2017.1420397.

    Article  Google Scholar 

  127. Wright J M, Parker L M, O’Connor W A, Scanes E, Ross P M. 2018b. Ocean acidification affects both the predator and prey to alter interactions between the oyster Crassostrea gigas (Thunberg. 1793). and the whelk Tenguella marginalba (Blainville, 1832). Mar. Biol, 165(3): 46, https://doi.org/10.1007/s00227-018-3302-6.

    Google Scholar 

  128. Wu F L, Wang T, Cui S K, Xie Z, Dupont S, Zeng J N, Gu H X, Kong H, Hu M H, Lu W Q, Wang Y J. 2017. Effects of seawater pH and temperature on foraging behavior of the Japanese stone crab Charybdis japonica. Mar. Pollut. Bull, 120(1-2): 99–108, https://doi.org/10.1016/j.marpolbul.2017.04.053.

    Article  Google Scholar 

  129. Xu X Y, Yip K R, Shin P K S, Cheung S G. 2017. Predator-prey interaction between muricid gastropods and mussels under ocean acidification. Mar. Pollut. Bull, 124(2): 911–916, https://doi.org/10.1016/j.marpolbul.2017.01.003.

    Article  Google Scholar 

  130. Xu X, Yang F, Zhao L Q, Yan X W. 2016. Seawater acidification affects the physiological energetics and spawning capacity of the Manila clam Ruditapes philippinarum during gonadal maturation. Comp. Biochem. Physiol. A: Mol Integr. Physiol, 196: 20–29, https://doi.org/10.1016/j.cbpa.2016.02.014.

    Article  Google Scholar 

  131. Zhao X G, Guo C, Han Y, Che Z M, Wang Y C, Wang X Y, Chai X L, Wu H X, Liu G X. 2017b. Ocean acidification decreases mussel byssal attachment strength and induces molecular byssal responses. Mar. Ecol. Prog. Ser., 565: 67–77, https://doi.org/10.3354/mepsl1992.

    Article  Google Scholar 

  132. Zhao X G, Shi W, Han Y, Liu S X, Guo C, Fu W D, Chai X L, Liu G X. 2017a. Ocean acidification adversely influences metabolism, extracellular pH and calcification of an economically important marine bivalve, Tegillarca granosa. Mar. Environ. Res., 125: 82–89, https://doi.org/10.1016/j.marenvres.2017.01.007.

    Article  Google Scholar 

  133. Zittier Z M C, Hirse T, Portner H. 2013. The synergistic effects of increasing temperature and CO2 levels on activity capacity and acid-base balance in the spider crab, Eyas araneus. Mar. Biol, 160(8): 2049–2062, https://doi.org/10.1007/s00227-012-2073-8.

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Jeff Clements, Dr. Sam Dupont, and two anonymous reviewers for their valuable comments and revisions for this review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Youji Wang.

Additional information

Supported by the National Natural Science Foundation of China (No. 31872587), the Shanghai Pujiang Program (No. 18PJ1404000), and the Shanghai Municipal Natural Science Foundation (No. 17ZR1412900)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wang, Y. Behavioral responses to ocean acidification in marine invertebrates: new insights and future directions. J. Ocean. Limnol. 38, 759–772 (2020). https://doi.org/10.1007/s00343-019-9118-5

Download citation

Keyword

  • carbon dioxide
  • global climate change
  • invertebrate behavior
  • ocean acidification (OA)
  • pH