Effects of organic carbon consumption on denitrifier community composition and diversity along dissolved oxygen vertical profiles in lake sediment surface

Abstract

At present, the understanding of the dynamics of denitrifiers at different dissolved oxygen (DO) layers under organic carbon consumption within the surface sediments remains inadequate. In this study, high-throughput sequencing and quantitative PCR targeting nirS gene were used to analyze the denitrifier abundance dynamics, community composition, and structure for aerobic (DO 0.5–6.9 mg/L), hypoxic-anoxic (DO 0–0.5 mg/L), and anoxic (DO 0 mg/L) layers in surface sediments under organic carbon consumption. Based on the analysis of nirS gene abundance, the values of denitrifying bacteria decreased with organic carbon consumption at different DO layers. When the bacterial species abundance at the genus level were compared between the high-carbon and low-carbon sediments, there was significant increase in 6 out of 36, 7 out of 36 and 6 out of 36 genera respectively for the aerobic, hypoxic-anoxic and anoxic layers. On the other hand, 14 out of 36, 9 out of 36 and 15 out of 36 genera showed significant decrease in bacterial species abundance respectively for the aerobic, hypoxic-anoxic and anoxic layers. Additionally, 14 out of 36, 20 out of 36, and 15 out of 36 genera had no change in bacterial species abundance respectively for the aerobic, hypoxic-anoxic, and anoxic layers. This indicates that the carbon utilization ability of different denitrifiers on each DO layers was generally different from each other. Diversity of denitrifying bacteria also presented significant differences in different DO layers between the high- and low-carbon content sediment layers. Moreover, under the high-carbon and low-carbon content, the abundance of nirS gene showed a high peak within the hypoxic-anoxic regions, suggesting that this region might be the main distribution area for the denitrifying bacteria within the surface sediments. Furthermore, community of unique denitrifiers occurred in different DO layers and the adaptive changes of the denitrifier community followed the organic carbon consumption.

This is a preview of subscription content, log in to check access.

Data Availability Statement

Sequence data that supports the findings of this study have been deposited in NCBI short-read archive under SRA accession PRJNA507510 (https://www.ncbi.nlm.nih.gov/sra/PRJNA507510) and PRJNA5313539 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA531353).

References

  1. Ben Maamar S, Aquilina L, Quaiser A, Pauwels H, Michon-Coudouel S, Vergnaud-Ayraud V, Labasque T, Roques C, Abbott B W, Dufresne A. 2015. Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths. Front. Microbiol., 6: 1 457, https://doi.org/10.3389/fmicb.2015.01457.

    Article  Google Scholar 

  2. Bier R L, Voss K A, Bernhardt E S. 2015. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME J., 9(6): 1 378–1 390, https://doi.org/10.1038/ismej.2014.222.

    Article  Google Scholar 

  3. Braker G, Ayala-del-Río H L, Devol A H, Fesefeldt A, Tiedje J M. 2001. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl. Environ. Microbiol., 67(4): 1 893–1 901, https://doi.org/10.1128/AEM.67.4.1893-1901.2001.

    Article  Google Scholar 

  4. Braker G, Fesefeldt A, Witzel K P. 1998. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol., 64(10): 3 769–3 775.

    Article  Google Scholar 

  5. Bulow S E, Francis C A, Jackson G A, Ward B B. 2008. Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays. Environ. Microbiol., 10(11): 3 057–3 069, https://doi.org/10.1111/j.1462-2920.2008.01765.x.

    Article  Google Scholar 

  6. Cao Y F, Zhang C S, Rong H W, Zheng G L, Zhao L M. 2017. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Res., 108: 86–94, https://doi.org/10.1016/j.watres.2016.10.063.

    Article  Google Scholar 

  7. Carlisle D M, Clements W H. 2005. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams. Freshw. Biol., 50(2): 380–390, https://doi.org/10.1111/j.1365-2427.2004.01323.x.

    Article  Google Scholar 

  8. Chen X C, Huang Y Y, Chen G Q, Li P P, Shen Y S, Davis T W. 2018. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere, 196: 280–287, https://doi.org/10.1016/j.chemosphere.2017.12.197.

    Article  Google Scholar 

  9. Chen Z G, Wang X J, Yang Y Y, Mirino M W, Yuan Y L. 2016. Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresour. Technol., 218: 580–588, https://doi.org/10.1016/j.biortech.2016.07.008.

    Article  Google Scholar 

  10. Christensen P B, Nielsen L P, Revsbech N P, Sørensen J. 1989. Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiol., 55(5): 1 234–1 241.

    Article  Google Scholar 

  11. Coyotzi S, Doxey A C, Clark I D, Lapen D R, Van Cappellen P, Neufeld J D. 2017. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ. Microbiol., 19(3): 1189–1208, https://doi.org/10.1111/1462-2920.13643.

    Article  Google Scholar 

  12. Fan M C, Lin Y B, Huo H B, Liu Y, Zhao L, Wang E T, Chen W M, Wei G H. 2016. Microbial communities in riparian soils of a settling pond for mine drainage treatment. Water Res., 96: 198–207, https://doi.org/10.1016/j.watres.2016.03.061.

    Article  Google Scholar 

  13. Francis C A, O’Mullan G D, Cornwell J C, Ward B B. 2013. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol., 4: 237, https://doi.org/10.3389/fmicb.2013.00237.

    Article  Google Scholar 

  14. Gao J, Hou L J, Zheng Y L, Liu M, Yin G Y, Li X F, Lin X B, Yu C D, Wang R, Jiang X F, Sun X R. 2016. nirS-encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Appl. Microbiol. Biotechnol., 100(19): 8 573–8 582, https://doi.org/10.1007/s00253-016-7659-5.

    Article  Google Scholar 

  15. Groffman P M, Butterbach-Bahl K, Fulweiler R W, Gold A J, Morse J L, Stander E K, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93(1–2): 49–77, https://doi.org/10.1007/s10533-008-9277-5.

    Article  Google Scholar 

  16. Huang S, Chen C, Yang X, Wu Q, Zhang R. 2011. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments. Biogeosciences, 8: 3 041–3 051, https://doi.org/10.5194/bg-8-3041-2011.

    Article  Google Scholar 

  17. Jenerette G D, Chatterjee A. 2012. Soil metabolic pulses: water, substrate, and biological regulation. Ecology, 93(5): 959–966, https://doi.org/10.1890/11-1527.1.

    Article  Google Scholar 

  18. Jia Z M, Liu T, Xia X H, Xia N. 2016. Effect of particle size and composition of suspended sediment on denitrification in river water. Sci. Total Environ., 541: 934–940, https://doi.org/10.1016/j.scitotenv.2015.10.012.

    Article  Google Scholar 

  19. Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol., 72(9): 5 957–5 962, https://doi.org/10.1128/AEM.00439-06.

    Article  Google Scholar 

  20. Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S, Jetten M S M, Strous M. 2007. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol., 30(1): 39–49, https://doi.org/10.1016/j.syapm.2006.03.004.

    Article  Google Scholar 

  21. Kim O S, Imhoff J F, Witzel K P, Junier P. 2011. Distribution of denitrifying bacterial communities in the stratified water column and sediment-water interface in two freshwater lakes and the Baltic Sea. Aquat. Ecol., 45(1): 99–112, https://doi.org/10.1007/s10452-010-9335-7.

    Article  Google Scholar 

  22. Knowles R. 1982. Denitrification. Microbiol. Rev., 46(1): 43–70.

    Article  Google Scholar 

  23. Laverman A M, Canavan R W, Slomp C P, van Cappellen P. 2007. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Res., 41(14): 3 061–3 068, https://doi.org/10.1016/j.watres.2007.04.002.

    Article  Google Scholar 

  24. Lee K C, Rittmann B E. 2003. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res., 37(7): 1 551–1 556, https://doi.org/10.1016/S0043-1354(02)00519-5.

    Article  Google Scholar 

  25. Li E C, Lu S G. 2017. Denitrification processes and microbial communities in a sequencing batch reactor treating nanofiltration (NF) concentrate from coking wastewater. Water Sci. Technol., 76(11–12): 3 289–3 298, https://doi.org/10.2166/wst.2017.493.

    Article  Google Scholar 

  26. Liu J X, Li C, Jing J H, Zhao P Y, Luo Z M, Cao M W, Ma Z Z, Jia T, Chai B F. 2018b. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Res., 133: 99–109, https://doi.org/10.1016/j.watres.2018.01.014.

    Article  Google Scholar 

  27. Liu W Z, Yao L, Jiang X L, Guo L D, Cheng X L, Liu G H. 2018a. Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Sci. Total. Environ., 616–617: 978–987, https://doi.org/10.1016/j.scitotenv.2017.10.221.

    Article  Google Scholar 

  28. Lu H J, Chandran K, Stensel D. 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Res., 64: 237–254, https://doi.org/10.1016/j.watres.2014.06.042.

    Article  Google Scholar 

  29. Mao G Z, Chen L, Yang Y Y, Wu Z, Tong T L, Liu Y, Xie S G. 2017. Vertical profiles of water and sediment denitrifiers in two plateau freshwater lakes. Appl. Microbiol. Biotechnol., 101(8): 3 361–3 370, https://doi.org/10.1007/s00253-016-8022-6.

    Article  Google Scholar 

  30. McKenney D J, Drury C F, Wang S W. 2001. Effects of oxygen on denitrification inhibition, repression, and derepression in soil columns. Soil Sci. Soc. Am. J., 65: 126–132, https://doi.org/10.2136/sssaj2001.651126x.

    Article  Google Scholar 

  31. Nancharaiah Y V, Joshi H M, Hausner M, Venugopalan V P. 2008. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere, 71(1): 30–35, https://doi.org/10.1016/j.chemosphere.2007.10.062.

    Article  Google Scholar 

  32. Nielsen L P, Christensen P B, Revsbech N P, Sørensen J. 1990a. Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol., 19(1): 63–72, https://doi.org/10.1007/BF02015054.

    Article  Google Scholar 

  33. Nielsen L P, Christensen P B, Revsbech N P, Sørensen J. 1990b. Denitrification and photosynthesis in stream sediment studied with microsensor and wholecore techniques. Limnol. Oceanogr., 35(5): 1 135–1 144, https://doi.org/10.4319/lo.1990.35.5.1135.

    Article  Google Scholar 

  34. Nolan B T. 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Groundwater, 39(2): 290–299, https://doi.org/10.1111/j.1745-6584.2001.tb02311.x.

    Article  Google Scholar 

  35. Puckett L J, Tesoriero A J, Dubrovsky N M. 2011. Nitrogen contamination of surficial aquifers-a growing legacy. Environ. Sci. Technol., 45(3): 839–844, https://doi.org/10.1021/es1038358.

    Article  Google Scholar 

  36. Qin H Y, Han C, Jin Z W, Wu L, Deng H, Zhu G W, Zhong W H. 2018. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake. J. Appl. Microbiol., 125(1): 121–132, https://doi.org/10.1111/jam.13758.

    Article  Google Scholar 

  37. Qiu T L, Xu Y, Gao M, Han M L, Wang X M. 2017. Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend as the carbon source and biofilm carrier. J. Biosci. Bioeng., 123(5): 606–612, https://doi.org/10.1016/j.jbiosc.2016.12.007.

    Article  Google Scholar 

  38. Remmas N, Melidis P, Katsioupi E, Ntougias S. 2016. Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresour. Technol., 220: 557–565, https://doi.org/10.1016/j.biortech.2016.09.009.

    Article  Google Scholar 

  39. Rong N, Shan B Q, Wang C. 2016. Determination of sediment oxygen demand in the Ziya River watershed, China: based on laboratory core incubation and microelectrode measurements. Int. J. Environ. Res. Public Health, 13(2): 232, https://doi.org/10.3390/ijerph13020232.

    Article  Google Scholar 

  40. Saarenheimo J, Aalto S L, Rissanen A J, Tiirola M. 2017. Microbial community response on wastewater discharge in boreal lake sediments. Front. Microbiol., 8: 750, https://doi.org/10.3389/fmicb.2017.00750.

    Article  Google Scholar 

  41. Santschi P, Höhener P, Benoit G, Buchholtz-ten Brink M. 1990. Chemical processes at the sediment-water interface. Mar. Chem., 30: 269–315, https://doi.org/10.1016/0304-4203(90)90076-O.

    Article  Google Scholar 

  42. Schmid M, Walsh K, Webb R, Rijpstra W I, van de Pas-Schoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe Damsté J S, Harris J, Shaw P, Jetten M, Strous M. 2003. CandidatusScalindua brodae”, sp. nov., CandidatusScalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol., 26(4): 529–538, https://doi.org/10.1078/072320203770865837.

    Article  Google Scholar 

  43. Seitzinger S, Harrison J A, Böhlke J K, Bouwman A F, Lowrance R, Peterson B, Tobias C, Van Drecht G. 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl., 16(6): 2 064–2 090, https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.

    Article  Google Scholar 

  44. Si Z H, Song X S, Wang Y H, Cao X, Zhao Y F, Wang B D, Chen Y, Arefe A. 2018. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: denitrification efficiency and bacterial community structure. Bioresour. Technol., 267: 416–425, https://doi.org/10.1016/j.biortech.2018.07.029.

    Article  Google Scholar 

  45. Sirivedhin T, Gray K A. 2006. Factors affecting denitrification rates in experimental wetlands: field and laboratory studies. Ecol. Eng., 26(2): 167–181, https://doi.org/10.1016/j.ecoleng.2005.09.001.

    Article  Google Scholar 

  46. Srinandan C S, D’souza G, Srivastava N, Nayak B B, Nerurkar A S. 2012. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour. Technol., 117: 292–299, https://doi.org/10.1016/j.biortech.2012.04.079.

    Article  Google Scholar 

  47. Sweerts J P R A, de Beer D. 1989. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake Vechten, the Netherlands). Appl. Environ. Microbiol., 55(3): 754–757.

    Article  Google Scholar 

  48. Thomsen T R, Kong Y H, Nielsen P H. 2007. Ecophysiology of abundant denitrifying bacteria in activated sludge. FEMS Microbiol. Ecol., 60(3): 370–382, https://doi.org/10.1111/j.1574-6941.2007.00309.x.

    Article  Google Scholar 

  49. Tian C C, Wang C B, Tian Y Y, Wu X Q, Xiao B D. 2015. Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China. Can. J. Microbiol., 61(8): 575–583, https://doi.org/10.1139/cjm-2015-0129.

    Article  Google Scholar 

  50. Van Rijn J, Tal Y, Schreier H J. 2006. Denitrification in recirculating systems: theory and applications. Aquac. Eng., 34(3): 364–376, https://doi.org/10.1016/j.aquaeng.2005.04.004.

    Article  Google Scholar 

  51. Waki M, Yasuda T, Fukumoto Y, Béline F, Magrí A. 2018. Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions: reactor operation and evaluation using modelling. Bioresour. Technol., 250: 574–582, https://doi.org/10.1016/j.biortech.2017.11.078.

    Article  Google Scholar 

  52. Wang C, Shan B Q, Zhang H, Rong N. 2014. Analyzing sediment dissolved oxygen based on microprofile modeling. Environ. Sci. Pollut. Res. Int., 21(17): 10 320–10 328, https://doi.org/10.1007/s11356-014-2875-y.

    Article  Google Scholar 

  53. Wang X W, Zhang Y, Zhang T T, Zhou J T. 2016. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis. Appl. Microbiol. Biotechnol., 100(6): 2 895–2 905, https://doi.org/10.1007/s00253-015-7146-4.

    Article  Google Scholar 

  54. Wen X, Gong B Z, Zhou J, He Q, Qing X X. 2017. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. Water Res., 119: 201–211, https://doi.org/10.1016/j.watres.2017.04.052.

    Article  Google Scholar 

  55. Wu S F, Wu Z, Liang Z Y, Liu Y, Wang Y L. 2019. Denitrification and the controlling factors in Yunnan Plateau Lakes (China): exploring the role of enhanced internal nitrogen cycling by algal blooms. J. Environ. Sci., 76: 349–358, https://doi.org/10.1016/j.jes.2018.05.028.

    Article  Google Scholar 

  56. Wu X, Liu G, Butterbach-Bahl K, Fu B, Zheng X, Brüggemann N. 2013. Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. J. Arid Environ., 92: 98–101, https://doi.org/10.1016/j.jaridenv.2013.02.003.

    Article  Google Scholar 

  57. Xu N, Tan G C, Wang H Y, Gai X P. 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil. Biol., 74: 1–8, https://doi.org/10.1016/j.ejsobi.2016.02.004.

    Article  Google Scholar 

  58. Xu Z S, Dai X H, Chai X L. 2018. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ., 634: 195–204, https://doi.org/10.1016/j).scitotenv.2018.03.348.

    Article  Google Scholar 

  59. Yang J K, Cheng Z B, Li J, Miao L H. 2013. Community composition of nirS-type denitrifier in a shallow eutrophic lake. Microb. Ecol., 66(4): 796–805, https://doi.org/10.1007/s00248-013-0265-5.

    Article  Google Scholar 

  60. Zou Y, Xu X C, Wang X J, Yang F L, Zhang S S. 2018. Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO) recycling. Bioresour. Technol., 268: 539–548, https://doi.org/10.1016/j.biortech.2018.08.015.

    Article  Google Scholar 

  61. Zumft W G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61(4): 533–616, https://doi.org/10.1016/j.ccr.2004.08.030.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bangding Xiao.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 31800112, 31800390, 31870450, 31670465)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, P., Gong, S., Wang, C. et al. Effects of organic carbon consumption on denitrifier community composition and diversity along dissolved oxygen vertical profiles in lake sediment surface. J. Ocean. Limnol. 38, 733–744 (2020). https://doi.org/10.1007/s00343-019-9103-z

Download citation

Keyword

  • eutrophic freshwater lake
  • surface sediments
  • dissolved oxygen profiles
  • denitrifier
  • organic carbon consumption