Temporal and spatial variations of bacterial community compositions in two estuaries of Chaohu Lake

Abstract

The distinctive estuary hydrodynamics and nutrient input make the estuary ecosystem play a key role in lake ecosystems. The Nanfei River and Zhaohe River are two main inlets of Chaohu Lake, Anhui, East China. We selected estuaries of the two rivers as representative areas to study temporal and spatial changes of bacterial communities. In August (summer) and November (autumn) 2016 and February (winter) and May (spring) 2017, 16 water and sediment samples were collected from the estuaries. Physicochemical characteristics indicate significant differences in the nutritional status and eutrophication index of the estuaries due mainly to organic input. Examination of the number of operational taxonomic units, the diversity index, the community composition, and redundancy analysis revealed the following. First, the existence of varying degrees of seasonal differences in the distribution of almost all bacteria. In addition, the species diversity in the sediment samples was higher than that in the water samples, and the dominant species differed also among these samples. Second, a large number of unknown genera were detected, especially in the sediment samples, such as unclassified Xanthomonadales incertae sedis, unclassified Anaerolineaceae, and unclassified Alcaligenaceae. Last, TP, TN, and TOC were the main influential factors that affected the bacterial community structure.

This is a preview of subscription content, log in to check access.

Data Availability Statement

All sequence data were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive with accession No. SRP217654.

References

  1. Ansola G, Arroyo P, De Miera L E S. 2014. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands. Sci. Total. Environ., 473-474: 63–71.

    Article  Google Scholar 

  2. Bai Y H, Shi Q, Wen D H, Li Z X, Jefferson W A, Feng C P, Tang X Y. 2012. Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PLoS One, 7 (5): e37796.

    Article  Google Scholar 

  3. Čanković M, Petrić I, M, Ciglenečki I. 2017. Spatiotemporal dynamics of sulfate-reducing bacteria in extreme environment of Rogoznica Lake revealed by 16S rRNA analysis. J. Marine Syst., 172: 14–23.

    Article  Google Scholar 

  4. Cao Y M, Zhang E L, Cheng G J. 2014. A primary study on relationships between subfossil chironomids and the distribution of aquatic macrophytes in three lowland floodplain lakes, China. Aquat. Ecol., 48 (4): 481–492.

    Article  Google Scholar 

  5. Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Lozupone C A, Turnbaugh P J, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P roc. Natl. Acad. Sci. USA, 108 (S1): 4 516–4 522.

    Article  Google Scholar 

  6. Chen Z B, Zhou Z Y, Peng X, Xiang H, Xiang S N, Jiang Z X. 2013. Effects of wet and dry seasons on the aquatic bacterial community structure of the Three Gorges Reservoir. World J. Microb iol. Biot echnol., 29 (5): 841–853.

    Article  Google Scholar 

  7. Dam B, Ghosh W, Gupta S K D. 2009. Das Gupta. Conjugative Type 4 secretion system of a novel large plasmid from the chemoautotroph Tetrathiobacter kashmirensis and construction of shuttle vectors for Alcaligenaceae. Appl. Environ. Microb iol., 75 (13): 4 362–4 373.

    Article  Google Scholar 

  8. Dang H Y, Li J, Chen R P, Wang L, Guo L Z, Zhang Z N, M G. 2010. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microb iol., 76 (14): 4 691–4 702.

    Article  Google Scholar 

  9. Deng D G, Xie P, Zhou Q, Yang H, Cuo L G. 2007. Studies on temporal and spatial variations of phytoplankton in Lake Chaohu. J. Integr. Plant Biol., 49 (4): 409–418.

    Article  Google Scholar 

  10. Dillon J G, McMath L M, Trout A L. 2009. Seasonal changes in bacterial diversity in the Salton Sea. Hydrobiologia, 632 (1): 49–64.

    Article  Google Scholar 

  11. Ding W, Zhu R B, L J, Wang Q. 2014. Matrix-bound phosphine, phosphorus fractions and phosphatase activity through sediment profiles in Lake Chaohu, China. Environ. Sci. Proc ess Impacts, 16 (5): 1 135–1 144.

    Article  Google Scholar 

  12. Edmonds-Wilson S L, Nurinova N I, Zapka C A, Fierer N, Wilson M. 2015. Review of human hand microbiome research. J. Dermatol. Sci., 80 (1): 3–12.

    Article  Google Scholar 

  13. Eggleton J, Thomas K V. 2004. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ. Int., 30 (7): 973–980.

    Article  Google Scholar 

  14. Eiler A, Zaremba-Niedzwiedzka K, Martínez-García M, McMahon K D, Stepanauskas R, Andersson S G, Bertilsson S. 2014. Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environ. Microb iol., 16 (9): 2 682–2 698.

    Article  Google Scholar 

  15. Fernández-Luqueño F, C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. 2011. Microbial communities to mitigate contamination of PAHs in soil—possibilities and challenges: a review. Environ. Sci. Pollut. R es., 18 (1): 12–30.

    Article  Google Scholar 

  16. Fuhrman J A, McCallum K, Davis A A. 1993. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl. Environ. Microb iol., 59 (5): 1 294–1 302.

    Article  Google Scholar 

  17. Gao X Y, Ming H X, Chen J Y, Li J Y, Han J L, Lin F A, Fan J F. 2014. Bacterial community in Dalian Bay petroleum pollution sediments. Acta Oceanol. Sin., 36 (6): 58–66. (in Chinese with English abstract)

    Google Scholar 

  18. Ghosh W, Bagchi A, Mandal S, Dam B, Roy P. 2005. Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic Betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int. J. Syst. Evol. Micr obiol., 55 (5): 1 779–1 787.

    Article  Google Scholar 

  19. Ghylin T W, Garcia S L, Moya F, Oyserman B O, Schwientek P, Forest K T, Mutschler J, Dwulit-Smith J, Chan L K, Martinez-Garcia M, Sczyrba A, Stepanauskas R, Grossart H P, Woyke T, Warnecke F, Malmstrom R, S, McMahon K D. 2014. Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage. ISME J., 8 (12): 2 503–2 516.

    Article  Google Scholar 

  20. Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, Haario H, Sivonen K. 2006. Effect of nutrient loading on bacterioplankton community composition in Lake Mesocosms. Microb. Ecol., 51 (2): 137–146.

    Article  Google Scholar 

  21. Henson M W, Lanclos V C, Faircloth B C, Thrash J C. 2018. Cultivation and genomics of the first freshwater SAR11 (LD12) isolate. ISME J., 12 (7): 1 846–1 860.

    Article  Google Scholar 

  22. Huang J, Zhan J Y, H M, Wu F, Deng X Z. 2013. Evaluation of the impacts of land use on water quality: a case study in The Chaohu Lake Basin. Scientific World J., 2013: 329187.

    Google Scholar 

  23. Huber J A, Mark Welch D B, Morrison H G, Huse S M, Neal P R, Butterfield D A, Sogin M L. 2007. Microbial population structures in the deep marine biosphere. Sci ence, 318 (5847): 97–100.

    Article  Google Scholar 

  24. Hug L A, Castelle C J, Wrighton K C, Thomas B C, Sharon I, Frischkorn K R, K H, Tringe S G, Banfield J F. 2013. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1 (1): 22.

    Article  Google Scholar 

  25. Kaluzhnaya O V, Itskovich V B, McCormack G P. 2011. Phylogenetic diversity of bacteria associated with the endemic freshwater sponge Lubomirskia baicalensis. World J. Microb iol. Biot echnol., 27 (8): 1 955–1 959.

    Article  Google Scholar 

  26. Kasai Y, Kishira H, Syutsubo K, Harayama S. 2001. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microb iol., 3 (4): 246–255.

    Article  Google Scholar 

  27. Kielak A M, Barreto C C, Kowalchuk G A, van Veen J A, Kuramae E E. 2016. The ecology of Acidobacteria: moving beyond genes and genomes. Front. Microbiol., 7: 744.

    Google Scholar 

  28. Kong M, Dong Z L, Chao J Y, Zhang Y M, Yin H B. 2015. Bioavailability and ecological risk assessment of heavy metals in surface sediments of Lake Chaohu. China Environ. Sci., 35 (4): 1 223–1 229. (in Chinese with English abstract)

    Google Scholar 

  29. Lane D J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M eds. Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York. p.115–175.

    Google Scholar 

  30. Liang B, Wang L Y, Zhou Z C, Mbadinga S M, Zhou L, Liu J F, Yang S Z, Gu J D, Mu B Z. 2016. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n -alkanes-degrading methanogenic enrichment culture. Front. Microbiol., 7: 1 431.

    Google Scholar 

  31. Lin W, Pan Y X. 2015. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Env iron. Mircobiol. Rep., 7 (2): 237–242.

    Article  Google Scholar 

  32. Lindh M V, R, Degerman R, Lundin D, Andersson A, Pinhassi J. 2015. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment. AMBIO, 44 (S3): 402–412.

    Article  Google Scholar 

  33. Liu E F, Shen J, Birch G F, Yang X D, Wu Y H, B. 2012. Human-induced change in sedimentary trace metals and phosphorus in Chaohu Lake, China, over the past halfmillennium. J. Paleolimnol., 47 (4): 677–691.

    Article  Google Scholar 

  34. Liu L M, Yang J, Zhang Y Y. 2011. Genetic diversity patterns of microbial communities in a subtropical riverine ecosystem (Jiulong River, Southeast China). Hydrobiologia, 678 (1): 113–125.

    Article  Google Scholar 

  35. Logares R, J, Heinrich F, Shalchian-Tabrizi K, Bertilsson S. 2010. Infrequent transitions between saline and fresh waters in one of the Most Abundant Microbial Lineages (SAR11). Mol. Biol. Evol., 27 (2): 347–357.

    Article  Google Scholar 

  36. Lovley D R, Ueki T, Zhang T, Malvankar N S, Shrestha P M, Flanagan K A, Aklujkar M, Butler J E, Giloteaux L, Rotaru A E, D E, Franks A E, Orellana R, Risso C, Nevin K P. 2011. Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol., 59: 1–100.

    Article  Google Scholar 

  37. Lv X F, Yu J B, Fu Y Q, Ma B, Qiu F Z, Ning K, H F. 2014. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci World J., 2014: 437684.

    Google Scholar 

  38. Mehta M P, Baross J A. 2006. Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science, 314 (5806): 1 783–1 786.

    Article  Google Scholar 

  39. Meng P, Ma T. 2015. Discussion on the current situation, causes and ecological treatment of water pollution in Chaohu Lake. Res. Economi. Environ. Pro t., (1): 171–173. (in Chinese)

    Google Scholar 

  40. Mills H J, Martinez R J, Story S, Sobecky P A. 2004. Identification of members of the metabolically active microbial populations associated with Beggiatoa species mat communities from Gulf of Mexico cold-seep sediments. Appl. Environ. Microb iol., 70 (9): 5 447–5 458.

    Article  Google Scholar 

  41. Nalewajko C, Murphy T P. 2001. Effects of temperature, and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimental approach. Limnology, 2 (1): 45–48.

    Article  Google Scholar 

  42. Newton R J, Jones S E, Eiler A, McMahon K D, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev., 75 (1): 14–49.

    Article  Google Scholar 

  43. Newton R J, McMahon K D. 2011. Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake. Environ. Microbiol, 13 (4): 887–899.

    Article  Google Scholar 

  44. Paerl H W, Dyble J, Moisander P H, Noble R T, Piehler M F, Pinckney J L, Steppe T F, Twomey L, Valdes L M. 2003. Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol. Ecol., 46 (3): 233–246.

    Article  Google Scholar 

  45. Parveen B, Reveilliez J P, Mary I, Ravet V, Bronner G, Mangot J F, Domaizon I, Debroas D. 2011. Diversity and dynamics of free-living and particle-associated Betaproteobacteria and Actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiol. Ecol., 77 (3): 461–476.

    Article  Google Scholar 

  46. Podosokorskaya O A, Kadnikov V V, Gavrilov S N, Mardanov A V, Merkel A Y, Karnachuk O V, Ravin N V, Bonch-Osmolovskaya E A, Kublanov I V. 2013. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ. Microbiol., 15 (6): 1 759–1 771.

    Article  Google Scholar 

  47. Riccio M L, Pallecchi L, R, Rossolini G M. 2001. In70 of plasmid pAX22, a bla VIM-1 -containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob. Age nts Chemother., 45 (4): 1 249–1 253.

    Article  Google Scholar 

  48. Robarts R D, Zohary T. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom‐forming cyanobacteria. New Zeal. J. Mar. Fresh wat. Res., 21 (3): 391–399.

    Article  Google Scholar 

  49. Ruban V, J F, Pardo P, G, Muntau H, Quevauviller P. 2001. Development of a harmonised phosphorus extraction procedure and certification of a sediment reference material. J. Environ. Monit., 3 (1): 121–125.

    Article  Google Scholar 

  50. Schneider D, Arp G, Reimer A, Reitner J, Daniel R. 2013. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS One, 8 (6): e66662.

    Article  Google Scholar 

  51. Shade A, Read J S, Welkie D G, Kratz T K, Wu C H, McMahon K D. 2011. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ. Microbiol., 13 (10): 2 752–2 767.

    Article  Google Scholar 

  52. Shang G P, Shang J C. 2005. Causes and control countermeasures of eutrophication in Chaohu lake, China. Chin. Geogr. Sci., 15 (4): 348–354.

    Article  Google Scholar 

  53. Song H, Li Z, Du B, Wang G, Ding Y. 2012. Bacterial communities in sediments of the shallow Lake Dongping in China. J. Appl. Microbiol., 112 (1): 79–89.

    Article  Google Scholar 

  54. Sun Q Y, Ma X L, Yang G D, Chen Z, Wu H L, Xuan H X. 2010. Studies on nitrogen, phosphorus and organic matter in ponds around Chaohu Lake. Environ. Sci., 31 (7): 1 510–1 515. (in Chinese with English abstract)

    Google Scholar 

  55. Tang X M, Li L L, Shao K Q, Wang B W, Cai X L, Zhang L, Chao J Y, Gao G. 2015. Pyrosequencing analysis of freeliving and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can. J. Microbiol., 61 (1): 22–31.

    Article  Google Scholar 

  56. Ter Braak C J F, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Wageningen University, Ithaca, NY, USA.

    Google Scholar 

  57. Thomas S H, Padilla-Crespo E, Jardine P M, Sanford R A, Löffler F E. 2009. Diversity and distribution of Anaeromyxobacter strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow. Appl. Environ. Microb iol., 75 (11): 3 679–3 687.

    Article  Google Scholar 

  58. Whitton B A, Potts M. 2000. The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic, Dordrecht, Boston.

    Google Scholar 

  59. Wyndham R C, Singh R K, Straus N A. 1988. Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Arch. Microbiol., 150 (3): 237–243.

    Article  Google Scholar 

  60. Xiao H H, J R. 2013. Characterization microbial community structure in wastewater treatment plants (WWTPs) through 16S rRNA clone library. J. Bas ic Sci. Eng., 21 (3): 522–531. (in Chinese with English abstract)

    Google Scholar 

  61. Xing P, Kong F X. 2007. Intra-habitat heterogeneity of environmental factors regulating bacterioplankton community composition in Lake Taihu, China. Aquat. Microb. Ecol., 48 (2): 113–122.

    Article  Google Scholar 

  62. Xue Y G, Liu F, Sun M. 2018. Community structure and influencing factors of bacterioplankton in spring in Zhushan Bay, Lake Taihu. Environ. Sci., 3 9 (3): 1 151–1 158. (in Chinese with English abstract)

    Google Scholar 

  63. Yamada T, Sekiguchi Y. 2009. Cultivation of uncultured chloroflexi subphyla: significance and ecophysiology of formerly uncultured chloroflexi ‘subphylum i’ with natural and biotechnological relevance. Microbes. Environ., 24 (3): 205–216.

    Article  Google Scholar 

  64. Yu L, Kong F X, Zhang M, Yang Z, Shi X L, Du M Y. 2014. The dynamics of Microcystis genotypes and Microcystin production and associations with environmental factors during blooms in Lake Chaohu, China. Toxins, 6 (12): 3 238–3 257.

    Article  Google Scholar 

  65. Zan F Y, Huo S L, Xi B D, Li Q Q, Liao H Q, Zhang J T. 2011. Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China. Environ. Earth Sci., 62 (8): 1 643–1 653.

    Article  Google Scholar 

  66. Zan F Y, Huo S L, Xi B D, Zhu C W, H Q, Zhang J T, K M. 2012. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China. J. Environ. Monit., 14 (3): 804–816.

    Article  Google Scholar 

  67. Zhang L, Gao G, Tang X M, Shao K Q, Gong Y. 2016. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China. Can. J. Microbiol., 62 (6): 455–463.

    Article  Google Scholar 

  68. Zhang L, Wang S R, Li Y P, Zhao H C, Qian W B. 2015. Spatial and temporal distributions of microorganisms and their role in the evolution of Erhai Lake eutrophication. Environ. Earth Sci., 74 (5): 3 887–3 896.

    Article  Google Scholar 

  69. Zhao Y, Wang Z Q, Z P, Xie C P, Fan Q, Wang Y. 2002. Investigation on water pollution by algae at locations of water collection in Chaohu Lake. J. Environ. Health, 19 (4): 316–318. (in Chinese with English abstract)

    Google Scholar 

  70. Zhou Q, Takenaka S, Murakami S, Seesuriyachan P, Kuntiya A, Aoki K. 2007. Screening and characterization of bacteria that can utilize ammonium and nitrate ions simultaneously under controlled cultural conditions. J. Biosci. Bioeng., 103 (2): 185–191.

    Article  Google Scholar 

Download references

Acknowledgment

Anonymous reviewers are acknowledged for their constructive comments and helpful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41601573, 41771235), the Key University Science Research Project of Anhui Province (No. KJ2019A0641), the Linkage Project of Anhui Public Welfare Technology Application Research (No. 1704f0804053), and the Science and the Technology Innovation Strategy and Soft Science Research Special Project of Anhui Province (No. 1706a02020048)

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, L., Liu, M. et al. Temporal and spatial variations of bacterial community compositions in two estuaries of Chaohu Lake. J. Ocean. Limnol. 38, 745–758 (2020). https://doi.org/10.1007/s00343-019-9096-7

Download citation

Keyword

  • estuary
  • water and sediment
  • bacterial diversity
  • bacterial community structure