Representing surface wind stress response to mesoscale SST perturbations in western coast of South America using Tikhonov regularization method

Abstract

Interaction between mesoscale perturbations of sea surface temperature (SSTmeso) and wind stress (WSmeso) has great influences on the ocean upwelling system and turbulent mixing in the atmospheric boundary layer. Using daily Quik-SCAT wind speed data and AMSR-E SST data, SSTmeso and WSmeso fields in the western coast of South America are extracted by using a locally weighted regression method (LOESS). The spatial patterns of SSTmeso and WSmeso indicate strong mesoscale SST-wind stress coupling in the region. The coupling coefficient between SSTmeso and WSmeso is about 0.009 5 N/(m2.°C) in winter and 0.008 2 N/(m2.°C) in summer. Based on mesoscale coupling relationships, the mesoscale perturbations of wind stress divergence (Div(WSmeso)) and curl (Curl (WSmeso)) can be obtained from the SST gradient perturbations, which can be further used to derive wind stress vector perturbations using the Tikhonov regularization method. The computational examples are presented in the western coast of South America and the patterns of the reconstructed WSmeso are highly consistent with SSTmeso, but the amplitude can be underestimated significantly. By matching the spatially averaged maximum standard deviations of reconstructed WSmeso magnitude and observations, a reasonable magnitude of WSmeso can be obtained when a rescaling factor of 2.2 is used. As current ocean models forced by prescribed wind cannot adequately capture the mesoscale wind stress response, the empirical wind stress perturbation model developed in this study can be used to take into account the feedback effects of the mesoscale wind stress-SST coupling in ocean modeling. Further applications are discussed for taking into account the feedback effects of the mesoscale coupling in large-scale climate models and the uncoupled ocean models.

This is a preview of subscription content, access via your institution.

Data Availability Statement

All of the data are obtained from the Asia–Pacific Data-Research Center (APDRC) of the University of Hawaii which is available at http://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=1.

References

  1. Albert A, Echevin V, Lévy M, Aumont O. 2010. Impact of nearshore wind stress curl on coastal circulation and primary productivity in the Peru upwelling system. J. Geophys. Res., 115(C12): C12033, https://doi.org/10.1029/2010JC006569.

    Article  Google Scholar 

  2. Bakun A. 1990. Global climate change and intensification of coastal ocean upwelling. Science, 247(4939): 198–201, https://doi.org/10.1126/science.247.4939.198.

    Article  Google Scholar 

  3. Bourras D, Reverdin G, Giordani H, Caniaux G. 2004. Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J. Geophys. Res., 109(D18): D18114, https://doi.org/10.1029/2004JD004799.

    Article  Google Scholar 

  4. Bryan F O, Tomas R, Dennis J M, Chelton D B, Loeb N G, McClean J L. 2010. Frontal scale air-sea interaction in high-resolution coupled climate models. J. Climate, 23(23): 6 277–6 291, https://doi.org/10.1175/2010JCLI3665.1.

    Article  Google Scholar 

  5. Businger J A, Shaw W J. 1984. The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dyn. Atmos. Oceans, 8(3-4): 267–281, https://doi.org/10.1016/0377-0265(84)90012-5.

    Article  Google Scholar 

  6. Capet X, Colas F, McWilliams J C, Penven P, Marchesiello P. 2008. Eddies in eastern boundary subtropical upwelling systems. In: Hecht M W, Hasumi H eds. Ocean Modeling in an Eddying Regime, Volume 177. American Geophysical Union, Washington. 350p, https://doi.org/10.1029/177GM10.

    Chapter  Google Scholar 

  7. Castelao R M. 2012. Sea surface temperature and wind stress curl variability near a cape. J. Phys. Oceanogr., 42(11): 2 073–2 087, https://doi.org/10.1175/JPO-D-11-0224.1.

    Article  Google Scholar 

  8. Chelton D B, Esbensen S K, Schlax M G, Thum N, Freilich M H, Wentz F J, Gentemann C L, McPhaden M J, Schopf P S. 2001. Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical pacific. J. Climate, 14(7): 1 479–1 498, https://doi.org/10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2.

    Article  Google Scholar 

  9. Chelton D B, Schlax M G, Freilich M H, Milliff R F. 2004. Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303(5660): 978–983, https://doi.org/10.1126/science.1091901.

    Article  Google Scholar 

  10. Chelton D B, Schlax M G, Samelson R M. 2007. Summertime coupling between sea surface temperature and wind stress in the California Current System. J. Phys. Oceanogr., 37(3): 495–517, https://doi.org/10.1175/JPO3025.1.

    Article  Google Scholar 

  11. Chelton D B, Xie S P. 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23(4): 52–69, https://doi.org/10.5670/oceanog.2010.05.

    Article  Google Scholar 

  12. Cleveland W S, Devlin S J. 1988. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc, 83(403): 596–610, https://doi.org/10.2307/2289282.

    Article  Google Scholar 

  13. Colas F, McWilliams J C, Capet X, Kurian J. 2012. Heat balance and eddies in the Peru-Chile current system. Climate Dyn., 39(1-2): 509–529, https://doi.org/10.1007/S00382-011-1170-6.

    Article  Google Scholar 

  14. Davey M, Huddleston M, Sperber K, Braconnot P, Bryan F, Chen D, Colman R, Cooper C, Cubasch U, Delecluse P, DeWitt D, Fairhead L, Flato G, Gordon C, Hogan T, Ji M, Kimoto M, Kitoh A, Knutson T, Latif M, Treut Le H, Li T, Manabe S, Mechoso C, Power S, Roeckner E, Terray L, Vintzileos A, Voss R, Wang B, Washington W, Yoshikawa I, Yu J, Yukimoto S, Zebiak S, Meehl G. 2002. STOIC: a study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18(5): 403–420, https://doi.org/10.1007/s00382-001-0188-6.

    Article  Google Scholar 

  15. Frenger I, Gruber N, Knutti R, Münnich M. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6(8): 608–612. https://doi.org/10.1038/ngeo1863.

    Article  Google Scholar 

  16. Gao J X, Zhang R H, Wang H N. 2019. Mesoscale SST perturbation-induced impacts on climatological precipitation in the Kuroshio-Oyashio extension region, as revealed by the WRF simulations. J. Oceanol. Limnol., 37(2): 385–397, https://doi.org/10.1007/s00343-019-8065-5.

    Article  Google Scholar 

  17. Gaube P, Chelton D B, Samelson R M, Schlax M G, O’Neill L W. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45(1): 104–132, https://doi.org/10.1175/JPO-D-14-0032.1.

    Article  Google Scholar 

  18. Giordani H, Planton S, Benech B, Kwon B H. 1998. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment. J. Geophys. Res., 103(C11): 25 047–25 060, https://doi.org/10.1029/98JC00892.

    Article  Google Scholar 

  19. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M, McWilliams J C, Nagai T, Plattner G K. 2011. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci., 4(11): 787–792, https://doi.org/10.1038/ngeo1273.

    Article  Google Scholar 

  20. Hoffman R N, Leidner S M. 2005. An introduction to the near-real-time QuikSCAT Data. Wea. Forecasting, 20(4): 476–493, https://doi.org/10.1175/WAF84L1.

    Article  Google Scholar 

  21. Jin X, Dong C M, Kurian J, McWilliams J C, Chelton D B, Li Z J. 2009. SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J. Phys. Oceanogr., 39(11): 2 957–2 970, https://doi.org/10.1175/2009JPO4205.1.

    Article  Google Scholar 

  22. Li Z J, Chao Y, McWilliams J C. 2006. Computation of the streamfunction and velocity potential for limited and irregular domains. Mon. Wea. Rev., 134(11): 3 384–3 394, https://doi.org/10.1175/MWR3249.1.

    Article  Google Scholar 

  23. Lynch P. 1989. Partitioning the wind in a limited domain. Mon. Wea.Rev., 117(7): 1 492–1 500, https://doi.org/10.1175/1520-0493(1989)117<1492PTWIAL>2.0.CO;2.

    Article  Google Scholar 

  24. Ma X H, Jing Z, Chang P, Liu X, Montuoro R, Small R J, Bryan F O, Greatbatch R J, Brandt P, Wu D X, Lin X P, Wu L X. 2016. Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613): 533–537, https://doi.org/10.1038/nature18640.

    Article  Google Scholar 

  25. Meehl G A, Covey C, McAvaney B, Latif M, Stouffer R J. 2005. Overview of the coupled model intercomparison project. Bull. Amer. Meteor. Soc., 86: 89–93.

    Article  Google Scholar 

  26. Minobe S, Kuwano-Yoshida A, Komori N, Xie S P, Small R J. 2008. Influence of the Gulf Stream on the troposphere. Nature, 452(7184): 206–209, https://doi.org/10.1038/nature06690.

    Article  Google Scholar 

  27. O’Neill L W, Chelton D B, Esbensen S K, Wentz F J. 2005. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current. J. Climate, 18(14): 2 706–2 723, https://doi.org/10.1175/JCLI3415.1.

    Article  Google Scholar 

  28. O’Neill L W, Chelton D B, Esbensen S K. 2010a. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23(2): 255–281, https://doi.org/10.1175/2009JCLI2613.1.

    Article  Google Scholar 

  29. O’Neill L W, Chelton D B, Esbensen S K. 2012. Covariability of surface wind and stress responses to sea surface temperature fronts. J. Climate, 25(17): 5 916–5 942, https://doi.org/10.1175/JCLI-D-11-00230.1.

    Article  Google Scholar 

  30. O’Neill L W, Esbensen S K, Thum N, Samelson R M, Chelton D B. 2010b. Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23(3): 559–581, https://doi.org/10.1175/2009JCLI2662.1.

    Article  Google Scholar 

  31. O’Neill L W. 2012. Wind speed and stability effects on coupling between surface wind stress and SST observed from buoys and satellite. J. Climate, 25(5): 1 544–1 569, https://doi.org/10.1175/JCLI-D-11-00121.1.

    Article  Google Scholar 

  32. Oerder V, Colas F, Echevin V, Masson S, Hourdin C, Jullien S, Madec G, Lemarié F. 2016. Mesoscale SST-wind stress coupling in the Peru-Chile current system: which mechanisms drive its seasonal variability? Climate Dyn., 47(7-8): 2 309–2 330, https://doi.org/10.1007/s00382-015-2965-7.

    Article  Google Scholar 

  33. Penven P, Echevin V, Pasapera J, Colas F, Tarn J. 2005. Average circulation, seasonal cycle, and mesoscale dynamics of the Peru Current System: a modeling approach. J. Geophys. Res., 110(C10): C10021, https://doi.org/10.1029/2005JC002945.

    Article  Google Scholar 

  34. Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E. 2016. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Climate Dyn., 46(5-6): 1 699–1 717, https://doi.org/10.1007/s00382-015-2669-z.

    Article  Google Scholar 

  35. Renault L, Molemaker M J, McWilliams J C, Shchepetkin A F, Lemarié F, Chelton D B, Illig S, Hall A. 2016. Modulation of wind work by oceanic current interaction with the atmosphere. J. Phys. Oceanogr., 46(6): 1 685–1 704, https://doi.org/10.1175/JPO-D-15-0232.1.

    Article  Google Scholar 

  36. Seo H, Miller A J, Norris J R. 2016. Eddy-wind interaction in the California Current System: dynamics and impacts. J. Phys. Oceanogr., 46(2): 439–459, https://doi.org/10.1175/JPO-D-15-0086.1.

    Article  Google Scholar 

  37. Seo H. 2017. Distinct influence of air-sea interactions mediated by mesoscale sea surface temperature and surface current in the Arabian Sea. J. Climate, 30(20): 8 061–8 080, https://doi.org/10.1175/JCLI-D-16-0834.1.

    Article  Google Scholar 

  38. Small R J, DeSzoeke S P, Xie S P, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S. 2008. Air-sea interaction over ocean fronts and eddies. Dyn.Atmos. Oceans, 45(3-4): 274–319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    Article  Google Scholar 

  39. Spall M A. 2007. Effect of sea surface temperature-wind stress coupling on baroclinic instability in the ocean. J. Phys. Oceanogr.37(4): 1 092–1 097, https://doi.org/10.1175/JPO3045.1.

    Article  Google Scholar 

  40. Strub P T, Mesias J M, Montecino V, Rutilant J, Salinas S. 1998. Coastal ocean circulation off western South America. In: Robinson A, Brink K eds. The Sea. Wiley, New York. p.29–67.

    Google Scholar 

  41. Sweet W, Fett R, Kerling J, La Violette P. 1981. Air-sea interaction effects in the lower troposphere across the north wall of the Gulf-stream. Mon. Wea. Rev., 109(5): 1 042–1 052, https://doi.org/10.1175/1520-0493(1981)109<1042ASIEIT>2.0.CO;2.

    Article  Google Scholar 

  42. Tikhonov A N, Arsenin V Y. 1977. Solution of Ill-Posed Problems. Winston and Sons, Washington.

    Google Scholar 

  43. Wei Y Z, Wang H N, Zhang R H. 2019. Mesoscale wind stress-SST coupled perturbations in the Kuroshio Extension. Prog. Oceanogr., 172: 108–123, https://doi.org/10.1016/j.pocean.2019.01.012.

    Article  Google Scholar 

  44. Wei Y Z, Zhang R H, Wang H N. 2017. Mesoscale wind stress- SST coupling in the Kuroshio extension and its effect on the ocean. J. Oceanogr., 73(6): 785–798, https://doi.org/10.1007/s10872-017-0432-2.

    Article  Google Scholar 

  45. Xie S P, Philander S G H. 1994. A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A: Dyn. Meteor. Oceanogr., 46(4): 340–350, https://doi.org/10.3402/tellusa.v46i4.15484.

    Article  Google Scholar 

  46. Zhang R H, Busalacchi A J. 2008. Rectified effects of tropical instability wave (TIW)-induced atmospheric wind feedback in the tropical Pacific. Geophys. Res. Lett., 35(5): L05608, https://doi.org/10.1029/2007GL033028.

    Article  Google Scholar 

  47. Zhang R H, Busalacchi A J. 2009. An empirical model for surface wind stress response to SST forcing induced by tropical instability waves (TIWs) in the eastern equatorial pacific. Mon. Wea. Rev., 137(6): 2 021–2 046, https://doi.org/10.1175/2008MWR2712.1.

    Article  Google Scholar 

  48. Zhang R H, Gao C. 2016. The IOCAS intermediate coupled model (IOCAS ICM) and its real-time predictions of the 2015-16 El Niño event. Sci. Bull., 66(13): 1 061–1 070, https://doi.org/10.1007/s11434-016-1064-4.

    Article  Google Scholar 

  49. Zhang R H, Gao C. 2017. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model. Sci. China Earth Sci., 60(9): 1 601–1 613, https://doi.org/10.1007/s11430-016-0201-9.

    Article  Google Scholar 

  50. Zhang R H. 2016. A modulating effect of Tropical Instability Wave (TIW)-induced surface wind feedback in a hybrid coupled model of the tropical Pacific. J. Geophys. Res., 121(10): 7326–7353, https://doi.org/10.1002/2015JC011567.

    Article  Google Scholar 

  51. Zhu Y C, Zhang R H. 2018. An Argo-derived background diffusivity parameterization for improved ocean simulations in the tropical Pacific. Geophys. Res. Lett., 45(3): 1 509–1 517, https://doi.org/10.1002/2017GL076269.

    Article  Google Scholar 

  52. Zhu Y C, Zhang R H. 2019. A modified vertical mixing parameterization for its improved ocean and coupled simulations in the tropical Pacific. J. Phys. Oceanogr., 49(1): 21–37, https://doi.org/10.1175/JPO-D-18-0100.1.

    Article  Google Scholar 

  53. Zuidema P, Chang P, Medeiros B, Kirtman B P, Mechoso R, Schneider E K, Toniazzo T, Richter I, Small R J, Bellomo K, Brandt P, de Szoeke S, Farrar J T, Jung E, Kato S, Li M K, Patricola C, Wang Z Y, Wood R, Xu Z. 2016. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific oceans. Bull. Amer. Meteor. Soc., 97(12): 2 305–2 327, https://doi.org/10.1175/BAMS-D-15-00274.1.

    Article  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the anonymous reviewers for their numerous comments that helped to improve the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rong-Hua Zhang.

Additional information

Supported by the National Key Research and Development Program of China (No. 2017YFC1404102(2017YFC1404100)), the National Program on Global Change and Air-sea Interaction (No. GASI-IPOVAI-06), the National Natural Science Foundation of China (Nos. 41490644(41490640), 41690122(41690120)), the Chinese Academy of Sciences Strategic Priority Project (No. XDA19060102), the NSFC Shandong Joint Fund for Marine Science Research Centers (No. U1406402), and the Taishan Scholarship and the Recruitment Program of Global Experts

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Zhang, RH., Wang, H. et al. Representing surface wind stress response to mesoscale SST perturbations in western coast of South America using Tikhonov regularization method. J. Ocean. Limnol. 38, 679–694 (2020). https://doi.org/10.1007/s00343-019-9042-8

Download citation

Keyword

  • mesoscale air-sea coupling
  • Tikhonov’s regularization method
  • western coast of South America