PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan

Abstract

We previously demonstrated that 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) promoted the production of nitric oxide (NO) and proinflammatory cytokines by activating the mitogen-activated protein kinases (MAPK) and Janus kinase (JAK)/STAT pathways in RAW 264.7 cells, indicating good immunomodulatory activity of HACC. In this study, to further investigate the immunomodulatory mechanisms of HACC, we determined the roles of phosphatidylinositol 3-kinase (PI3K)/Akt, activating protein (AP-1) and nuclear factor kappa B (NF-κB) in HACC-induced activation of RAW 264.7 cells by the western blotting. The results suggest that HACC promoted the phosphorylation of p85 and Akt. Furthermore, c-Jun and p65 were also increased after the treatment of RAW 264.7 cells with HACC, indicating the translocation of NF-κB and AP-1 from cytoplasm to nucleus. In addition, as scanning electron microscopy (SEM) analysis shows, the cell morphology changed after HACC treatment. These findings indicate that HACC activated MAPK, JAK/STAT, and PI3K/Akt signaling pathways dependent on AP-1 and NF-κB activation in RAW 264.7 cells, ultimately leading to the increase of NO and cytokines.

This is a preview of subscription content, log in to check access.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Cantley L C. 2002. The phosphoinositide 3-kinase pathway. Science, 296 (5573): 1655–1657.

    Article  Google Scholar 

  2. Chae H S, Kang O H, Lee Y S, Choi J G, Oh Y C, Jang H J, Kim M S, Kim J H, Jeong S I, Kwon D Y. 2009. Inhibition of LPS-induced iNOS, COX-2 and inflammatory mediator expression by paeonol through the MAPKs inactivation in RAW 264.7 cells. Am. J. Chinese Med., 37 (1): 181–194.

    Article  Google Scholar 

  3. Cheever M L, Sato T K, de Beer T, Kutateladze T G, Emr S D, Overduin M. 2001. Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes. Nature Cell Biology3 (7): 613–618.

    Article  Google Scholar 

  4. Chen J J, Huang W C, Chen C C. 2005. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein d and CREB-binding protein. Mol Biol Cell, 16 (12): 5579–5591.

    Article  Google Scholar 

  5. Fang R H, Zhang L F. 2016. Nanoparticle-based modulation of the immune system. Annu Rev Chem Biomol Eng., 7 (1): 305–326.

    Article  Google Scholar 

  6. Gugasyan R, Grumont R, Grossmann M, Nakamura Y, Pohl T, Nesic D, Gerondakis S. 2000. Rel/NF-κB transcription factors: key mediators of B-cell activation. Immunol Rev., 176 (1): 134–140.

    Article  Google Scholar 

  7. Guha M, Mackman N. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling, 13 (2): 85–94.

    Article  Google Scholar 

  8. Gukovsky I, Gukovskaya A S, Blinman T A, Zaninovic V, Pandol S J. 1998. Early NF-κB activation is associated with hormone-induced pancreatitis. Am J Physiol., 275 (6): G1402–G1414.

    Google Scholar 

  9. Hartley J W, Evans L H, Green K Y, Naghashfar Z, Macias A R, Zerfas P M, Ward J M. 2008. Expression of infectious murine leukemia viruses by RAW264.7 cells, a potential complication for studies with a widely used mouse macrophage cell line. Retrovirology, 5: 1.

    Article  Google Scholar 

  10. Hattori Y, Hattori S, Kasai K. 2003. Lipopolysaccharide activates Akt in vascular smooth muscle cells resulting in induction of inducible nitric oxide synthase through nuclear factor-kappa B activation. European Journal of Pharmacology, 481 (2-3): 153–158.

    Article  Google Scholar 

  11. Johnson G L, Lapadat R. 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298 (5600): 1911–1912.

    Article  Google Scholar 

  12. Kao S J, Lei H C, Kuo C T, Chang M S, Chen B C, Chang Y C, Chiu W T, Lin C H. 2005. Lipoteichoic acid induces nuclear factor-kappaB activation and nitric oxide synthase expression via phosphatidylinositol 3-kinase, Akt, and p38 MAPK in RAW 264.7 macrophages. Immunology, 115 (3): 366–374.

    Article  Google Scholar 

  13. Karin M, Liu Z G, Zandi E. 1997. AP-1 function and regulation. Curr. Opin. Cell Biol., 9 (2): 240–246.

    Article  Google Scholar 

  14. Katso R, Okkenhaug K, Ahmadi K, White S, Timms J, Waterfield M D. 2001. Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 17 (1): 615–675.

    Article  Google Scholar 

  15. Koyasu S. 2003. The role of PI3K in immune cells. Nat Immunol., 4 (4): 313–319.

    Article  Google Scholar 

  16. Kurita K. 2006. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechno., 8 (3): 203–226.

    Article  Google Scholar 

  17. Lee C G, Da Silva C A, Lee J Y, Hartl D, Elias J A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Curr. Opin. Immunol., 20 (6): 684–689.

    Article  Google Scholar 

  18. Li K K, Shen S S, Deng X Y, Shiu H T, Siu W S, Leung P C, Ko C H, Cheng B H. 2018. Dihydrofisetin exerts its anti-inflammatory effects associated with suppressing ERK/ p38 MAPK and Heme Oxygenase-1 activation in lipopolysaccharide-stimulated RAW 264.7 macrophages and carrageenan-induced mice paw edema. International Immunopharmacology, 54: 366–374.

    Article  Google Scholar 

  19. Li L, Wang L Y, Wu Z Q, Yao L J, Wu Y H, Huang L, Liu K, Zhou X, Gou D M. 2014. Anthocyanin-rich fractions from red raspberries attenuate inflammation in both RAW264.7 macrophages and a mouse model of colitis. Sci Rep., 4: 6234.

    Article  Google Scholar 

  20. Li Y, Qin Y K, Liu S, Li P C, Xing R E. 2016. Preparation, characterization, and antifungal activity of hymexazol-linked chitosan derivatives. Chinese Journal of Oceanology and Limnology, 35 (5): 1079–1085.

    Article  Google Scholar 

  21. Liang N, Sang Y X, Liu W H, Yu W L, Wang X H. 2018. Anti-Inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway. Inflammation, 41 (3): 835–845.

    Article  Google Scholar 

  22. Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr Polym., 184: 243–259.

    Article  Google Scholar 

  23. Ma P, Liu H T, Wei P, Xu Q S, Bai X F, Du Y G, Yu C. 2011. Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr. Polym., 84 (4): 1391–1398.

    Article  Google Scholar 

  24. Musti A M, Treier M, Bohmann D. 1997. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP Kinases. Science, 275 (5298): 400–402.

    Article  Google Scholar 

  25. Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I. 1984. Immunological activity of chitin and its derivatives. Vaccine, 2 (1): 93–99.

    Article  Google Scholar 

  26. Nyati K K, Masuda K, Zaman M M U, Dubey P K, Millrine D, Chalise J P, Higa M, Li S L, Standley D M, Saito K, Hanieh H, Kishimoto T. 2017. TLR4-induced NF-κB and MAPK signaling regulate the IL-6 mRNA stabilizing protein Arid5a. Nucleic Acids Res., 45 (5): 2687–2703.

    Article  Google Scholar 

  27. Pillai C K S, Paul W, Sharma C P. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progress in Polymer Science, 34 (7): 641–678.

    Article  Google Scholar 

  28. Poltorak A, He X L, Smirnova I, Liu M Y, van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282 (5396): 2085–2088.

    Article  Google Scholar 

  29. Raschke W C, Baird S, Ralph P, Nakoinz I. 1978. Functional macrophage cell lines transformed by abelson leukemia virus. Cell, 15 (1): 261–267.

    Article  Google Scholar 

  30. Schindler C, Levy D E, Decker T. 2007. JAK-STAT signaling: from interferons to cytokines. J Biol Chem., 282 (28): 20059–20063.

    Article  Google Scholar 

  31. Shen T, Yang W S, Yi Y S, Sung G H, Rhee M H, Poo H, Kim M Y, Kim K W, Kim J H, Cho J Y. 2013. AP-1/IRF-3 targeted anti-Inflammatory activity of andrographolide isolated from Andrographis paniculata Evid Based Complement Alternat. Med., 2013 (4): 210 736.

    Google Scholar 

  32. Sun H X, Zhang J, Chen F Y, Chen X F, Zhou Z H, Wang H. 2015. Activation of RAW264.7 macrophages by the polysaccharide from the roots of Actinidia eriantha and its molecular mechanisms. Carbohydr. Polym., 121: 388–402.

    Article  Google Scholar 

  33. Tang B, Li X, Ren Y, Wang J, Xu D, Hang Y, Zhou T, Li F, Wang L. 2017. MicroRNA-29a regulates lipopolysaccharide (LPS)-induced inflammatory responses in murine macrophages through the Akt1/ NF-kappaB pathway. Exp. Cell Res., 360 (2): 74–80.

    Article  Google Scholar 

  34. Wen Q, Mei L Y, Ye S, Liu X, Xu Q, Miao J F, Du S H, Chen D F, Li C, Li H. 2018. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-ψ. International Immunopharmacology, 56: 90–97.

    Article  Google Scholar 

  35. Wymann M P, Pirola L. 1998. Structure and function of phosphoinositide 3-kinases. BBA- Mol Cell Biol Lipids1436 (1-2): 127–150.

    Article  Google Scholar 

  36. Yang Y, Xing R E, Liu S, Qin Y K, Li K C, Yu H H, Li P C. 2019. Hydroxypropyltrimethyl ammonium chloride chitosan activates RAW 264.7 macrophages through the MAPK and JAK-STAT signaling pathways. Carbohydr Polym., 205: 401–409.

    Article  Google Scholar 

  37. Youn G S, Lee K W, Choi S Y, Park J. 2016. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages. Free Radical Biology and Medicine97: 14–23.

    Article  Google Scholar 

  38. Yu Y, Shen M Y, Wang Z J, Wang Y X, Xie M Y, Xie J H. 2017. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr. Polym., 174: 669–676.

    Article  Google Scholar 

  39. Zhang Q, Wang L R, Chen B H, Zhuo Q, Bao C Y, Lin L. 2017. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. International Immunopharmacology, 51: 158–164.

    Article  Google Scholar 

  40. Zhang Y, Igwe O J. 2018. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem. Pharmacol., 147: 104–118.

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Dr. Weicheng HU for proving cell culture room in Huaiyin Normal University (Jiangsu, China).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rong’e Xing or Pengcheng Li.

Additional information

Supported by the National Key R&D Program of China (No. 2018YFC0311305) and the Key Research and Development Program of Shandong Province (Nos. 2019GHY112015, 2019YYSP028)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Xing, R., Liu, S. et al. PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan. J. Ocean. Limnol. 38, 834–840 (2020). https://doi.org/10.1007/s00343-019-9013-0

Download citation

Keyword

  • hydroxypropyltrimethyl ammonium chloride chitosan
  • RAW 264.7 cells
  • PI3K/Akt pathway
  • nuclear factor-κB
  • activating protein 1