Skip to main content
Log in

Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The effect of sonication pretreatment condition on Eucheuma cottonii and Gelidium amansii seaweed towards agar extraction wae studied. Four parameters were changed during sonication to investigate the effects on agar yield and quality. These parameters include the time interval, concentration ratio, frequency, and intensity. The highest amount of agar extracted from Eucheuma cottonii species could be obtained from the time interval of 30 min, seaweed weight to solvent volume ratio of 1:20, the frequency of 35 Hz, and the sonication power intensity of 30%. For Gelidium amansii species, the best agar yield also could be obtained from the time interval of 30 min, 1:20 of seaweed weight to water volume ratio, the frequency of 35 Hz, and power intensity of 30%. From the experiment, sonication pretreatment significantly influenced the yield and properties of extracted agar. The sonication with autoclaved seaweed produced agar containing less sulfate content, which is an excellent chemical property for gel electrophoresis applications. The gel strength of sonication with autoclaving for both seaweeds, Eucheuma and Gelidium species was the highest among those by sonication with direct heating, which proved that sonication pretreatment with autoclaving could enhance the physical properties of the agar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Khalil H P S, Lai T K, Tye Y Y, Rizal S, Chong E W N, Yap S W, Hamzah A A, Nurul Fazita M R, Paridah M T. 2018. A review of extractions of seaweed hydrocolloids: properties and applications. eXPRESS Polymer Letters, 12(4): 296–317, https://doi.org/10.3144/expresspolymlett.2018.27.

    Article  Google Scholar 

  • Ahmad R, Surif M, Ramli N, Yahya N, Nor A R M, Bekbayeva L. 2011. A preliminary study on the agar content and agar gel strength of Gracilaria manilaensis using different agar extraction processes. World Applied Sciences Journal, 15(2): 184–188.

    Google Scholar 

  • Andriamanantoanina H, Chambat G, Rinaudo M. 2007. Fractionation of extracted Madagascan Gracilaria corticata polysaccharides: structure and properties. Carbohydrate Polymers, 68(1): 77–88.

    Article  Google Scholar 

  • Arvizu-Higuera D L, Rodríguez-Montesinos Y E, Murillo-Álvarez J I, Muñoz-Ochoa M, Hernández-Carmona G. 2008. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla. Journal of Applied Phycology, 20(5): 515–519.

    Article  Google Scholar 

  • Bird K T, Hinson T K. 1992. Seasonal variations in agar yields and quality from North Carolina agarophytes. Botanica Marina, 35(4): 291–295.

    Article  Google Scholar 

  • Bleakley S, Hayes M. 2017. Algal proteins: extraction, application, and challenges concerning production. Foods, 6(5): 33, https://doi.org/10.3390/foods6050033.

    Article  Google Scholar 

  • Chan S W, Mirhosseini H, Taip F S, Ling T C, Tan C P. 2013. Comparative study on the physicochemical properties of κ-carrageenan extracted from Kappaphycus alvarezii (doty) doty ex Silva in Tawau, Sabah, Malaysia and commercial κ-carrageenans. Food Hydrocolloids, 30(2): 581–588, https://doi.org/10.1016/j.foodhyd.2012.07.010.

    Article  Google Scholar 

  • Chew K W, Juan J C, Phang S M, Ling T C, Show P L. 2018a. An overview on the development of conventional and alternative extractive methods for the purification of agarose from seaweed. Separation Science and Technology, 53(3): 467–480, https://doi.org/10.1080/01496395.2017.1394881.

    Article  Google Scholar 

  • Chew K W, Show P L, Yap Y J, Juan J C, Phang S M, Ling T C, Chang J S. 2018b. Sonication and grinding pre-treatments on Gelidium amansii seaweed for the extraction and characterization of agarose. Frontiers of Environmental Science & Engineering, 12(4): 2.

    Article  Google Scholar 

  • Distantina S, Wiratni, Fahrurrozi M, Rochmadi. 2011. Carrageenan properties extracted from Eucheuma cottonii, Indonesia. World Academy of Science, Engineering and Technology, 54(6): 738–742.

    Google Scholar 

  • Duckworth M, Yaphe W. 1971. The structure of agar: part I. Fractionation of a complex mixture of polysaccharides. Carbohydrate Research, 16(1): 189–197.

    Article  Google Scholar 

  • Fidelis G P, Camara R B G, Queiroz M F, Costa M S S P, Santos P C, Rocha H A O, Costa L S. 2014. Proteolysis, NaOH and ultrasound-enhanced extraction of anticoagulant and antioxidant sulfated polysaccharides from the edible seaweed, Gracilaria birdiae. Molecules, 19(11): 18 511–18 526. https://doi.org/10.3390/molecules191118511.

    Article  Google Scholar 

  • Francavilla M, Pineda A, Lin C S K, Franchi M, Trotta P, Romero A A, Luque R. 2013. Natural porous agar materials from macroalgae. Carbohydrate Polymers, 92(2): 1 555–1 560, https://doi.org/10.1016/j.carbpol.2012.11.005.

    Article  Google Scholar 

  • Fuse T, Goto F. 1971. Studies on utilization of agar. Agricultural and Biological Chemistry, 35(6): 799–804, https://doi.org/10.1080/00021369.1971.10859998.

    Google Scholar 

  • Gómez-Ordóñez E, Rupérez P. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocolloids, 25(6): 1 514–1 520.

    Article  Google Scholar 

  • Hernández-Carmona G, Freile-Pelegrín Y, Hernández-Garibay E. 2013. Conventional and alternative technologies for the extraction of algal polysaccharides. In: Domínguez H ed. Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Oxford, Philadelphia, p. 476–515.

    Google Scholar 

  • Kumar V, Fotedar R. 2009. Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994). Carbohydrate Polymers, 78(4): 813–819, https://doi.org/10.1016/j.carbpol.2009.07.001.

    Article  Google Scholar 

  • Li H Y, Yu X J, Jin Y, Zhang W, Liu Y L. 2008. Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresource Technology, 99(8): 3 301–3 305, https://doi.org/10.1016/j.biortech.2007.07.002.

    Article  Google Scholar 

  • Loureiro R R, Reis R P, Critchley A T. 2010. In vitro cultivation of three Kappaphycus alvarezii (Rhodophyta, Areschougiaceae) variants (green, red and brown) exposed to a commercial extract of the brown alga Ascophyllum nodosum (Fucaceae, Ochrophyta). Journal of Applied Phycology, 22(1): 101–104.

    Article  Google Scholar 

  • Mollet J C, Rahaoui A, Lemoine Y. 1998. Yield, chemical composition and gel strength of agarocolloids of Gracilaria gracilis, Gracilariopsis longissima and the newly reported Gracilaria cf. vermiculophylla from Roscoff (Brittany, France). Journal of Applied Phycology, 10(1): 59–66.

    Article  Google Scholar 

  • Montaño N E, Villanueva R D, Romero J B. 1999. Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta). Journal of Applied Phycology, 11(1): 27–34.

    Article  Google Scholar 

  • Navarro D A, Flores M L, Stortz C A. 2007. Microwave-assisted desulfation of sulfated polysaccharides. Carbohydrate Polymers, 69(4): 742–747.

    Article  Google Scholar 

  • Nishinari K, Fang Y P. 2017. Relation between structure and rheological/thermal properties of agar. A mini-review on the effect of alkali treatment and the role of agaropectin. Food Structure, 13: 24–34. https://doi.org/10.1016/j.foostr.2016.10.003.

    Article  Google Scholar 

  • Orduña-Rojas J, García-Camacho K Y, Orozco-Meyer P, Ríosmena-Rodríguez R, Pacheco-Ruiz I, Zertuche-González J, Meling-López A E. 2008. Agar properties of two species of Gracilariaceae from the Gulf of California, Mexico. Journal of Applied Phycology, 20(2): 169–175.

    Article  Google Scholar 

  • Ouyang Q Q, Hu Z, Li S D, Quan W Y, Wen L L, Yang Z M, Li P W. 2018. Thermal degradation of agar: mechanism and toxicity of products. Food Chemistry, 264: 277–283, https://doi.org/10.1016/j.foodchem.2018.04.098.

    Article  Google Scholar 

  • Oyieke H A. 1993. The yield, physical and chemical properties of agar gel from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya coast. Hydrobiologia, 260–261(1): 613–620.

    Article  Google Scholar 

  • Recalde M P, Canelón D J, Compagnone R S, Matulewicz M C, Cerezo A S, Ciancia M. 2016. Carrageenan and agaran structures from the red seaweed Gymnogongrus tenuis. Carbohydrate Polymers, 136: 1 370–1 378, https://doi.org/10.1016/j.carbpol.2015.10.007.

    Article  Google Scholar 

  • Sasuga K, Yamanashi T, Nakayama S, Ono S, Mikami K. 2017. Optimization of yield and quality of agar polysaccharide isolated from the marine red macroalga Pyropia yezoensis. Algal Research, 26: 123–130, https://doi.org/10.1016/j.algal.2017.07.010.

    Article  Google Scholar 

  • Souza H K S, Sousa A M M, Gómez J, Gonçalves M P. 2012. Complexation of WPI and microwave-assisted extracted agars with different physicochemical properties. Carbohydrate Polymers, 89(4): 1 073–1 080, https://doi.org/10.1016/j.carbpol.2012.03.065

    Article  Google Scholar 

  • Stanley N F. 1995. Agars. In: Stephen A M ed. Food Polysaccharides and Their Applications. Marcel Dekker Inc, New York. p. 187–204.

    Google Scholar 

  • Wang L J, Shen Z P, Mu H M, Lin Y, Zhang J L, Jiang X L. 2017. Impact of alkali pretreatment on yield, physico-chemical and gelling properties of high quality agar from Gracilaria tenuistipitata. Food Hydrocolloids, 70: 356–362, https://doi.org/10.1016/j.foodhyd.2016.11.042.

    Article  Google Scholar 

  • Yarnpakdee S, Benjakul S, Kingwascharapong P. 2015. Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocolloids, 51: 217–226, https://doi.org/10.1016/j.foodhyd.2015.05.004.

    Article  Google Scholar 

Download references

Acknowledgment

The final version was edited and polished by Dr. Roger Z. YU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pau Loke Show or Joon Ching Juan.

Additional information

Supported by the University of Malaya under Equitable Society Research Cluster (ESRC) (No. GC002A-15SBS)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, S.S., Chew, K.W., Chang, YK. et al. Extraction of agar from Eucheuma cottonii and Gelidium amansii seaweeds with sonication pretreatment using autoclaving method. J. Ocean. Limnol. 37, 871–880 (2019). https://doi.org/10.1007/s00343-019-8145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8145-6

Keyword

Navigation