Skip to main content
Log in

Responses of marine-derived Trichoderma fungi to seawater and their potential antagonistic behaviour

  • Chemistry
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To explore the metabolic responses of marine-derived Trichoderma fungi to environmental stresses, the survivability, metabolism, and antagonism of ten marine isolates have been examined. Their survival in both freshwater and seawater indicates them to be facultative marine fungi, but they are more adaptable to marine environment. Most of them feature strain-specific and positive metabolic responses to seawater, which also usually result in the higher proportions of heteroatom-bearing and unsaturated units in mycelial constituents. Seawater factors can promote many strains to produce bioactive metabolites, including plant pathogen- and marine phytoplankton-inhibitory and marine animal-toxic ones, but the effects of NaCl are often weak or negative. The inhibition of marine phytoplankton corresponds to the intracellular accumulation of heteroatom-bearing and unsaturated units under seawater condition, and the varied toxicities to marine animals further signify the divergences of lipophilic exudates under different conditions. The results may contribute to further understanding and mining the structural diversity and biological activity of secondary metabolites from marine-derived Trichoderma fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blunt J W, Carroll A R, Copp B R, Davis R A, Keyzers R A, Prinsep M R. 2018. Marine natural products. Nat. Prod. Rep., 35 (1): 8–53.

    Article  Google Scholar 

  • Bugni T S, Ireland C M. 2004. Marine–derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep., 21 (1): 143–163.

    Article  Google Scholar 

  • Cacciola S O, Puglisi I, Faedda R, Sanzaro V, Pane A, Lo Piero A R, Evoli M, Petrone G. 2015. Cadmium induces cadmium–tolerant gene expression in the filamentous fungus Trichoderma harzianum. Mol. Biol. Rep., 42 (11): 1 559–1 570.

    Article  Google Scholar 

  • Chen C Y, Imamura N, Nishijima M, Adachi K, Sakai M, Sano H. 1996. Halymecins, new antimicroalgal substances produced by fungi isolated from marine algae. J. Antibiot., 49 (10): 998–1 005.

    Article  Google Scholar 

  • Chen L, Zhong P, Pan J R, Zhou K J, Huang K, Fang Z X, Zhang Q Q. 2013. Asperelines G and H, two new peptaibols from the marine–derived fungus Trichoderma asperellum. Heterocycles, 87 (3): 645–655.

    Article  Google Scholar 

  • Garo E, Starks C M, Jensen P R, Fenical W, Lobkovsky E, Clardy J. 2003. Trichodermamides A and B, cytotoxic modified dipeptides from the marine–derived fungus Trichoderma virens. J. Nat. Prod., 66 (3): 423–426.

    Article  Google Scholar 

  • Ghisalberti E L, Sivasithamparam K. 1991. Antifungal antibiotics produced by Trichoderma spp. Soil Biol. Biochem., 23 (11): 1 011–1 020.

    Article  Google Scholar 

  • Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species—opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol., 2 (1): 43–56.

    Article  Google Scholar 

  • Ji N Y, Wang B G. 2016. Mycochemistry of marine algicolous fungi. Fungal Divers., 80 (1): 301–342.

    Article  Google Scholar 

  • Keswani C, Mishra S, Sarma B K, Singh S P, Singh H B. 2014. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl. Microbiol. Biotechnol., 98 (2): 533–544.

    Article  Google Scholar 

  • Kubanek J, Jensen P R, Keifer P A, Sullards M C, Collins D O, Fenical W. 2003. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA, 100 (12): 6 916–6 921.

    Article  Google Scholar 

  • Lejeune R, Nielsen J, Baron G V. 1995. Influence of pH on the morphology of Trichoderma reeseiqm 9414 in submerged culture. Biotechnol. Lett., 17 (3): 341–344.

    Article  Google Scholar 

  • Liu B N, Qiao C S, Jia S R. 2006. Studies on the method for the measurement of fungal biomass. Pharm. Biotechnol., 13 (1): 40–44. (in Chinese with English abstract)

    Google Scholar 

  • Lu D D, Goebel J, Qi Y Z, Zou J Z, Han X T, Gao Y H, Li Y G. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4 (3): 493–505.

    Article  Google Scholar 

  • Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M. 2001. Effect of sea water concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience, 42 (5): 455–459.

    Article  Google Scholar 

  • Miao F P, Liang X R, Yin X L, Wang G, Ji N Y. 2012. Absolute configurations of unique harziane deterpenes from Trichoderma species. Org. Lett., 14 (15): 3 815–3 817.

    Article  Google Scholar 

  • Nan C R, Dong S L. 2004. Progress on the competition between macroalgae and microalgae. Mar. Sci., 28 (11): 64–66. (in Chinese with English abstract)

    Google Scholar 

  • Papavizas G C. 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Ann. Rev. Phytopathol., 23 (1): 23–54.

    Article  Google Scholar 

  • Puglisi I, Faedda R, Sanzaro V, Lo Piero A R, Petrone G, Cacciola S O. 2012. Identification of differentially expressed genes in response to mercury I and II stress in Trichoderma harzianum. Gene, 506 (2): 325–330.

    Article  Google Scholar 

  • Reino J L, Guerrero R F, Hernández–Galán R, Collado I G. 2008. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem. Rev., 7 (1): 89–123.

    Article  Google Scholar 

  • Ren J W, Xue C M, Tian L, Xu M J, Chen J, Deng Z W, Proksch P, Lin W H. 2009. Asperelines A–F, peptaibols from the marine–derived fungus Trichoderma asperellum. J. Nat. Prod., 72 (6): 1 036–1 044.

    Article  Google Scholar 

  • Schulz B, Sucker J, Aust H J, Krohn K, Ludewig K, Jones P G, Döring D. 1995. Biologically active secondary metabolites of endophytic Pezicula species. Mycol. Res., 99 (8): 1 007–1 015.

    Article  Google Scholar 

  • Solis P N, Wright C W, Anderson M M, Gupta M P, Phillipson J D. 1993. A microwell cytotoxicity assay using Artemia salina (brine shrimp). Planta Med., 59 (3): 250–252.

    Article  Google Scholar 

  • Song F H, Dai H Q, Tong Y J, Ren B, Chen C X, Sun N, Liu X Y, Bian J, Liu M, Gao H, Liu H W, Chen X P, Zhang L X. 2010. Trichodermaketones A–D and 7–O–methylkoninginin D from the marine fungus Trichoderma koningii. J. Nat. Prod., 73 (5): 806–810.

    Article  Google Scholar 

  • Sun Y, Tian L, Huang J, Ma H Y, Zheng Z, Lv A L, Yasukawa K, Pei Y H. 2008. Trichodermatides A–D, novel polyketides from the marine–derived fungus Trichoderma reesei. Org. Lett., 10 (3): 393–396.

    Article  Google Scholar 

  • Tarman K, Lindequist U, Wende K, Porzel A, Arnold N, Wessjohann L A. 2011. Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats. Mar. Drugs, 9 (3): 294–306.

    Article  Google Scholar 

  • Tyrrell J V, Connell L B, Scholin C A. 2002. Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae, 1 (2): 205–214.

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti E L, Marra R, Woo S L, Lorito M. 2008. Trichoderma–plant–pathogen interactions. Soil Biol. Biochem., 40 (1): 1–10.

    Article  Google Scholar 

  • Wang S, Li X M, Teuscher F, Diesel A, Ebel R, Proksch P, Wang B G. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod., 69 (11): 1 622–1 625.

    Article  Google Scholar 

  • Weindling R. 1932. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 22 (10): 837–845.

    Google Scholar 

  • Weindling R. 1934. Studies on lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizoctinia solani and other soil fungi. Phytopathology, 24 (11): 1 153–1 179.

    Google Scholar 

  • Xue Q Z. 1992. Study on population dynamics of Littorina brevicula on rocky shore in Qingdao, China. Oceanol. Limnol. Sin., 23 (4): 438–444. (in Chinese with English abstract)

    Google Scholar 

  • Yamazaki H, Rotinsulu H, Narita R, Takahashi R, Namikoshi M. 2015. Induced production of halogenated epidithiodiketopiperazines by a marine–derived Trichoderma cf. brevicompactum with sodium halides. J. Nat. Prod., 78 (10): 2 319–2 321.

    Article  Google Scholar 

  • Yin D C, Deng X, Chet I, Song R Q. 2013. Responses of Trichoderma harzianum T28 under drought and saltalkali stress. J. Anhui Agri. Sci., 41 (30): 11 997–12 000. (in Chinese with English abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naiyun Ji.

Additional information

Supported by the National Natural Science Foundation of China (No. 31670355), the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201712), and the Open Fund of Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences (No. KF2017NO4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Miao, F., Liu, X. et al. Responses of marine-derived Trichoderma fungi to seawater and their potential antagonistic behaviour. J. Ocean. Limnol. 37, 525–534 (2019). https://doi.org/10.1007/s00343-019-8059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-8059-3

Keyword

Navigation