Skip to main content
Log in

Estimating areal carbon fixation of intertidal macroalgal community based on composition dynamics and laboratory measurements

  • Ecology
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The community dynamics and potential carbon fixation of intertidal macroalgae were investigated monthly from April 2014 to April 2015 in the northwest coast of Yellow Sea. Seasonal variations in biomass and carbon fixation were presented and showed close relationship with community structure. The carbon fixation rate ranged from 0.48±0.13 mg C/(gFW·d) to 4.35±0.12 mg C/(gFW·d). Sargassum thunbergii, Chondrus ocellatus and Ulva intestinalis were three most influential species which contributed 27%, 21.9% and 18.5% variation of carbon fixation rate, respectively. Standing carbon stocks ranged from 7.52 gC/m2 to 41.31 gC/m2, and estimated carbon stocks varied from 11.77 gC/m2 to 96.49 gC/m2. The larger difference between estimated and standing carbon stocks implied that more fixed carbon was exported from the community in summer and autumn than in winter. This study suggested that intertidal macroalgal community could provide a potential function in carbon fixation of coastal ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beardall J, Raven J A. 2004. The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia, 43(1): 26–40.

    Article  Google Scholar 

  • Beardall J, Roberts S. 1999. Inorganic carbon acquisition by two Antarctic macroalgae, Porphyra endiviifolium (Rhodophyta: Bangiales) and Palmaria decipiens (Rhodophyta: Palmariales). Polar Biology, 21(5): 310–315.

    Article  Google Scholar 

  • Bhatti J S, Apps M J, Jiang H. 2002. Influence of nutrients, disturbances and site conditions on carbon stocks along a boreal forest transect in central Canada. Plant and Soil, 242(1): 1–14.

    Article  Google Scholar 

  • Bouillon S, Borges A V, Castañeda-Moya E, Diele K, Dittmar T, Duke N C, Kristensen E, Lee S Y, Marchand C, Middelburg J J, Ivera-Monroy V H, Smith III T J, Twilley R R. 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles, 22(2): GB2013.

    Article  Google Scholar 

  • Brylinsky M. 1977. Release of dissolved organic matter by some marine macrophytes. Marine Biology, 39(3): 213–220.

    Article  Google Scholar 

  • Carlson D J, Carlson M L. 1984. Reassessment of exudation by fucoid macroalgae. Limnology and Oceanography, 29(5): 1077–1087.

    Article  Google Scholar 

  • Chung I K, Beardall J, Mehta S, Sahoo D, Stojkovic S. 2011. Using marine macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology, 23(5): 877–886.

    Article  Google Scholar 

  • Chung I K, Oak J H, Lee J A, Shin J A, Kim J G, Park K S. 2013. Installing kelp forests/seaweed beds for mitigation and adaptation against global warming: Korean project overview. ICES Journal of Marine Science, 70(5): 1038–1044.

    Article  Google Scholar 

  • Delille B, Borges A V, Delille D. 2009. Influence of giant kelp beds ( Macrocystis pyrifera ) on diel cycles of pCO 2 and DIC in the Sub-Antarctic coastal area. Estuarine, Coastal and Shelf Science, 81(1): 114–122.

    Article  Google Scholar 

  • Duarte C M, Marbà N, Gacia E, Fourqurean J W, Beggins J, Barrón C, Apostolaki E T. 2010. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24(4): GB4032

    Article  Google Scholar 

  • Duarte C M, Middelburg J J, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1): 1–8

    Article  Google Scholar 

  • Franklin L A, Badger M R. 2001. A comparison of photosynthetic electron transport rates in macroalgae measured by pulse amplitude modulated chlorophyll fluorometry and mass spectrometry. Journal of Phycology, 37(5): 756–767.

    Article  Google Scholar 

  • Gao G Y. 2002. Qingdao Yearbook. China Intercontinental Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Gao K S, McKinley K R. 1994. Use of macroalgae for marine biomass production and CO2 remediation: a review. Journal of Applied Phycology, 6(1): 45–60.

    Article  Google Scholar 

  • Gao K S, Xu J T, Zheng Y Q, Ke C H. 2012. Measurement of benthic photosynthesis and calcification in flowing-through seawater with stable carbonate chemistry. Limnology and Oceanography: Methods, 10(7): 555–559.

    Google Scholar 

  • Gao K S. 2014. Algal Carbon Fixation: Basis, Advances and Methods. Science Press, Beijing, China. p.160–165. (in Chinese)

    Google Scholar 

  • Harlin M M, Craigie J S. 1975. The distribution of photosynthate in Ascophyllum nodosum as it relates to epiphytic Polysiphonia lanosa. Journal of Phycology, 11(1): 109–113.

    Google Scholar 

  • Jackson G A. 1987. Modelling the growth and harvest yield of the giant kelp Macrocystis pyrifera. Marine Biology, 95(4): 611–624.

    Article  Google Scholar 

  • Kennedy H, Beggins J, Duarte C M, Fourqurean J W, Holmer M, Marbà N, Middelburg J J. 2010. Seagrass sediments as a global carbon sink: isotopic constraints. Global Biogeochemical Cycles, 24(4): GB4026.

    Article  Google Scholar 

  • Khailov K M, Burlakova Z P. 1969. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnology and Oceanography, 14(4): 521–527.

    Article  Google Scholar 

  • Leigh E G, Paine R T, Quinn J F, Suchanek T H. 1987. Wave energy and intertidal productivity. Proceedings of the National Academy of Sciences of the United States of America 84(5): 1314–1318.

    Article  Google Scholar 

  • Littler M M, Murray S N. 1974. The primary productivity of marine macrophytes from a rocky intertidal community. Marine Biology, 27(2): 131–135.

    Google Scholar 

  • Longstaff B J, Kildea T, Runcie J W, Cheshire A, Dennison W C, Hurd C, Kana T, Raven J A, Larkum A W D. 2002. An in situ study of photosynthetic oxygen exchange and electron transport rate in the marine macroalga Ulva lactuca (Chlorophyta). Photosynthesis Research, 74(3): 281–293.

    Article  Google Scholar 

  • Mcleod E, Chmura G L, Bouillon S, Salm R, Björk M, Duarte C M, Lovelock C E, Schlesinger W H, Silliman B R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10): 552–560.

    Article  Google Scholar 

  • Mercado J M, Gordillo F J L, Figueroa F L, Niell F X. 1998. External carbonic anhydrase and affinity for inorganic carbon in intertidal macroalgae. Journal of Experimental Marine Biology and Ecology, 221(2): 209–220.

    Article  Google Scholar 

  • Middelboe A L, Hansen P J. 2007. Direct effects of pH and inorganic carbon on macroalgal photosynthesis and growth. Marine Biology Research, 3(3): 134–144.

    Article  Google Scholar 

  • Muraoka D. 2004. Seaweed resources as a source of carbon fixation. Bulletin of Fisheries Research Agency, (S1): 59–63.

    Google Scholar 

  • Nellemann C, Corcoran E, Duarte C M, Valdes L, DeYoung C, Fonseca L, Grimsditch G. 2009. Blue carbon: the role of healthy oceans in binding carbon; a rapid response assessment. United Nations Environment Programme, GRID Arendal, Arendal, Norway.

    Google Scholar 

  • Penhale P A, Capone D G. 1981. Primary productivity and nitrogen fixation in two macroalgae-cyanobacteria associations. Bulletin of Marine Science, 31(1): 164–169.

    Google Scholar 

  • Renaud S M, Luong-Van J T. 2006. Seasonal variation in the chemical composition of tropical Australian marine macroalgae. Journal of Applied Phycology, 18(5): 381–387.

    Article  Google Scholar 

  • Tsai C C, Chang J S, Sheu F, Shyu Y T, Yu A Y C, Wong S L, Dai C F, Lee T M. 2005. Seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a highly eutrophic reef in southern Taiwan: temperature limitation and nutrient availability. Journal of Experimental Marine Biology and Ecology, 315(1): 49–69.

    Article  Google Scholar 

  • Tseng C K. 1983. Common Seaweeds of China. Science Press, Beijing, China.

    Google Scholar 

  • Tseng C K. 2009. Seaweeds in Yellow Sea and Bohai Sea of China. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Turan G, Neori A. 2010. Intensive sea weed aquaculture: a potent solution against global warming. In: Seckbach J, Einav R, Israel A eds. Seaweeds and Their Role in Globally Changing Environments, Springer, Dordrecht. p.357–372.

  • Xia B M. 2011. Chinese Seaweed: Rhodophyta. 2(7). Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Yoshikawa T, Takeuchi I, Furuya K. 2001. Active erosion of Undaria pinnatifida Suringar (Laminariales, Phaeophyceae) mass-cultured in Otsuchi Bay in northeastern Japan. Journal of Experimental Marine Biology and Ecology, 266(1): 51–65.

    Article  Google Scholar 

  • Zheng B L. 2001. Chinese Seaweed: Rhodophyta. 2(6). Science Press, Beijing, China. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianghai Tang.

Additional information

Supported by the Public Science and Technology Research Funds Projects of Ocean (No. 201305030), the National Natural Science Foundation of China (No. 41276137), and the China Agriculture Research System (No. CARS-50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zhao, E., Liu, C. et al. Estimating areal carbon fixation of intertidal macroalgal community based on composition dynamics and laboratory measurements. J. Ocean. Limnol. 37, 93–101 (2019). https://doi.org/10.1007/s00343-019-7292-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7292-0

Keyword

Navigation