Skip to main content
Log in

Spatial and seasonal variability of global ocean diapycnal transport inferred from Argo profiles

  • Physics
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The global diapycnal transport in the ocean interior is one of the significant branches to return the deep water back toward near-surface. However, the amount of the diapycnal transport and the seasonal variations are not determined yet. This paper estimates the dissipation rate and the associated diapycnal transports at 500 m, 750 m and 1 000 m depth throughout the global ocean from the wide-spread Argo profiles, using the finescale parameterizations and classic advection-diffusion balance. The net upwelling is ~5.2±0.81 Sv (Sverdrup) which is approximately one fifth in magnitude of the formation of the deep water. The Southern Ocean is the major region with the upward diapycnal transport, while the downwelling emerges mainly in the northern North Atlantic. The upwelling in the Southern Ocean accounts for over 50% of the amount of the global summation. The seasonal cycle is obvious at 500 m and vanishes with depth, indicating the energy source at surface. The enhancement of diapycnal transport occurs at 1 000 m in the Southern Ocean, which is pertinent with the internal wave generation due to the interaction between the robust deep-reaching flows and the rough topography. Our estimates of the diapycnal transport in the ocean interior have implications for the closure of the oceanic energy budget and the understanding of global Meridional Overturning Circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Caldeira K, Duffy P B. 2000. The role of the Southern Ocean in uptake and storage of anthropogenic carbon dioxide. Science, 287 (5453): 620–622.

    Article  Google Scholar 

  • De Boor C. 1962. Bicubic spline interpolation. Journal of Mathematics and Physics, 41 (1–4): 212–218.

    Article  Google Scholar 

  • Dietrich D E, Mehra A, Haney R L, Bowman M J, Tseng Y H. 2004. Dissipation effects in North Atlantic Ocean modeling. Geophysical Research Letters, 31 (5): L05302.

    Book  Google Scholar 

  • Donohue K A, Tracey K L, Watts D R, Chidichimo M P, Chereskin T K. 2016. Mean antarctic circumpolar current transport measured in Drake Passage. Geophysical Research Letters, 43 (22): 11 760–11 767.

    Article  Google Scholar 

  • Frölicher T L, Sarmiento J L, Paynter D J, Dunne J P, Krasting J P, Winton M. 2015. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. Journal of Climate, 28 (2): 862–886.

    Article  Google Scholar 

  • Furuichi N, Hibiya T, Niwa Y. 2008. Model–predicted distribution of wind–induced internal wave energy in the world's oceans. Journal of Geophysical Research: Oceans, 113 (C9): C09034.

    Google Scholar 

  • Gargett A E. 1990. Do we really know how to scale the turbulent kinetic energy dissipation rate ε due to breaking of oceanic internal waves? Journal of Geophysical Research: Oceans, 95 (C9): 15 971–15 974.

    Google Scholar 

  • Gregg M C, Kunze E. 1991. Shear and strain in Santa Monica basin. Journal of Geophysical Research: Oceans, 96 (C9): 16 709–16 719.

    Book  Google Scholar 

  • Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422 (6931): 513–515.

    Article  Google Scholar 

  • Gregg M C. 1987. Diapycnal mixing in the thermocline: a review. Journal of Geophysical Research: Oceans, 92 (C5): 5 249–5 286.

    Google Scholar 

  • Gregg M C. 1989. Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research: Oceans, 94 (C7): 9 686–9 698.

    Book  Google Scholar 

  • Haugan PM, Alendal G. 2005. Turbulent diffusion and transport from a CO 2 lake in the deep ocean. Journal of Geophysical Research: Oceans, 110 (C9): C09S14.

    Google Scholar 

  • Henyey F S. 1991. Scaling of internal wave predictions for ε. In: Dynamics of Internal Gravity Waves in the Ocean: Proceedings of ‘Aha Huliko’ a Hawaiian Winter Workshop. University of Hawaii at Manoa, Honolulu, HI. p.233–236.

    Google Scholar 

  • Huang C, Xu Y S. 2018. Update on the global energy dissipation rate of deep–ocean low–frequency flows by bottom boundary layer. Journal of Physical Oceanography, 48(6): 1 243–1 255, https://doi.org/10.1175/JPO–D–16–0287.1.

    Article  Google Scholar 

  • Huber M, Tailleux R, Ferreira D, Kuhlbrodt T, Gregory J. 2015. A traceable physical calibration of the vertical advection–diffusion equation for modeling ocean heat uptake. Geophysical Research Letters, 42 (7): 2 333–2 341.

    Article  Google Scholar 

  • Jayne S R. 2009. The impact of abyssal mixing parameterizations in an ocean general circulation model. Journal of Physical Oceanography, 39 (7): 1 756–1 775.

    Article  Google Scholar 

  • Johnson G C. 2008. Quantifying Antarctic bottom water and North Atlantic deep water volumes. Journal of Geophysical Research: Oceans, 113 (C5): C05027.

    Book  Google Scholar 

  • Khatiwala S, Tanhua T, MikaloffFletcher S, Gerber M, Doney S C, Graven H D, Gruber N, McKinley G A, Murata A, Ríos A F, Sabine C L. 2013. Global ocean storage of anthropogenic carbon. Biogeosciences, 10 (4): 2 169–2 191.

    Article  Google Scholar 

  • Klymak J M, Moum J N, Nash J D, Kunze E, Girton J B, Carter G S, Lee C M, Sanford T B, Gregg M C. 2006. An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. Journal of Physical Oceanography, 36 (6): 1 148–1 164.

    Article  Google Scholar 

  • Kunze E, Firing E, Hummon J M, Chereskin T K, Thurnherr A M. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36 (8): 1 553–1 576.

    Article  Google Scholar 

  • Kunze E, Williams A J, Briscoe M G. 1990. Observations of shear and vertical stability from a neutrally buoyant float. Journal of Geophysical Research: Oceans, 95 (C10): 18 127–18 142.

    Book  Google Scholar 

  • Kunze E. 2017. Internal–wave–driven mixing: global geography and budgets. Journal of Physical Oceanography, 47 (6): 1 325–1 345.

    Article  Google Scholar 

  • LeBel D A, Smethie W M Jr, Rhein M, Kieke D, Fine R A, Bullister J L, Min D H, Roether W, Weiss R F, Andrié C, Smythe–Wright D, Jones E P. 2008. The formation rate of North Atlantic deep water and eighteen degree water calculated from CFC–11 inventories observed during WOCE. Deep Sea Research Part I: Oceanographic Research Papers, 55 (8): 891–910.

    Article  Google Scholar 

  • Ledwell J R, St Laurent L C, Girton J B, Toole J M. 2011. Diapycnal mixing in the Antarctic circumpolar Current. Journal of Physical Oceanography, 41 (1): 241–246.

    Article  Google Scholar 

  • Li Y, Xu Y S. 2014. Penetration depth of diapycnal mixing generated by wind stress and flow over topography in the northwestern Pacific. Journal of Geophysical Research: Oceans, 119 (8): 5 501–5 514.

    Google Scholar 

  • Luis A J, Pandey P C. 2004. Seasonal variability of QSCATderived wind stress over the Southern Ocean. Geophysical Research Letters, 31 (13): L13304.

    Google Scholar 

  • Lumpkin R, Speer K. 2007. Global ocean meridional overturning. Journal of Physical Oceanography, 37 (10): 2 550–2 562.

    Article  Google Scholar 

  • Marshall J, Speer K. 2012. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience, 5 (3): 171–180.

    Article  Google Scholar 

  • Morrison A K, Frölicher T L, Sarmiento J L. 2015. Upwelling in the southern ocean. Physics Today, 68 (1): 27–32.

    Article  Google Scholar 

  • Munk W H. 1966. Abyssal recipes. Deep Sea Research and Oceanographic Abstracts, 13 (4): 707–730.

    Article  Google Scholar 

  • Munk W H. 1981. Internal waves and small–scale processes. In: Warren B A, Wunsch C H. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel. The MIT Press, Kamp Bridge, MA. 623p.

  • Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45 (12): 1 977–2 010.

    Article  Google Scholar 

  • Naveira Garabato A C, Polzin K L, King B A, Heywood K J, Visbeck M. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303 (5655): 210–213.

    Article  Google Scholar 

  • Nikurashin M, Ferrari R. 2011. Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophysical Research Letters, 38 (8): L08610.

    Book  Google Scholar 

  • Nikurashin M, Ferrari R. 2013. Overturning circulation driven by breaking internal waves in the deep ocean. Geophysical Research Letters, 40 (12): 3 133–3 137.

    Article  Google Scholar 

  • Nikurashin M, Vallis G K, Adcroft A. 2013. Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nature Geoscience, 6 (1): 48–51.

    Article  Google Scholar 

  • Orsi A H, Whitworth III T, Nowlin W D Jr. 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42 (5): 641–673.

    Article  Google Scholar 

  • Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10 (1): 83–89.

    Article  Google Scholar 

  • Ostrovskii A, Font J. 2003. Advection and dissipation rates in the upper ocean mixed layer heat anomaly budget over the North Atlantic in summer. Journal of Geophysical Research: Oceans, 108 (C12): 3376.

    Book  Google Scholar 

  • Peltier W R, Caulfield C P. 2003. Mixing efficiency in stratified shear flows. Annual Review of Fluid Mechanics, 35: 135–167.

    Article  Google Scholar 

  • Polzin K L, Toole J M, Ledwell J R, Schmitt R W. 1997. Spatial variability of turbulent mixing in the abyssal ocean. Science, 276 (5309): 93–96.

    Article  Google Scholar 

  • Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 25 (3): 306–328.

    Article  Google Scholar 

  • Risien C M, Chelton D B. 2008. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. Journal of Physical Oceanography, 38 (11): 2 379–2 413.

    Article  Google Scholar 

  • Sabine C L, Feely R A, Gruber N, Key R M, Lee K, Bullister J L, Wanninkhof R, Wong C S, Wallace D W R, Tilbrook B, Millero F J, Peng T H, Kozyr A, Ono T, Rios A F. 2004. The oceanic sink for anthropogenic CO 2. Science, 305 (5682): 367–371.

    Article  Google Scholar 

  • Sallée J B, Morrow R, Speer K. 2008. Eddy heat diffusion and Subantarctic Mode Water formation. Geophysical Research Letters, 35 (5): L05607.

    Google Scholar 

  • Schmitz W J. 1995. On the interbasin–scale thermohaline circulation. Reviews of Geophysics, 33 (2): 151–173.

    Article  Google Scholar 

  • Scott R B, Xu Y S. 2009. An update on the wind power input to the surface geostrophic flow of the World Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 56 (3): 295–304.

    Article  Google Scholar 

  • Sheen K L, Brearley J A, Naveira Garabato A C, Smeed D A, Waterman S, Ledwell J R, Meredith M P, St Laurent L, Thurnherr A M, Toole J M, Watson A J. 2013. Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: results from the diapycnal and isopycnal mixing experiment in the Southern Ocean (DIMES). Journal of Geophysical Research: Oceans, 118 (6): 2 774–2 792.

    Google Scholar 

  • Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51 (25–26): 3 043–3 068.

    Google Scholar 

  • St Laurent L. 2008. Turbulent dissipation on the margins of the South China Sea. Geophysical Research Letters, 35 (23): L23615.

    Book  Google Scholar 

  • Talley L D. 2003. Shallow, intermediate, and deep overturning components of the global heat budget. Journal of Physical Oceanography, 33: 530–560.

    Article  Google Scholar 

  • Talley L D. 2013. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography, 26 (1): 80–97.

    Article  Google Scholar 

  • Thompson A F, Gille S T, MacKinnon J A, Sprintall J. 2007. Spatial and temporal patterns of small–scale mixing in Drake Passage. Journal of Physical Oceanography, 37 (3): 572–592.

    Article  Google Scholar 

  • Toggweiler J R, Samuels B. 1998. On the ocean’s large–scale circulation near the limit of no vertical mixing. Journal of Physical Oceanography, 28 (9): 1 832–1 852.

    Article  Google Scholar 

  • Waterman S, Naveira Garabato A C, Polzin K L. 2013. Internal waves and turbulence in the Antarctic Circumpolar Current. Journal of Physical Oceanography, 43 (2): 259–282.

    Article  Google Scholar 

  • Watson A J, Ledwell J R, Messias M J, King B A, Mackay N, Meredith M P, Mills B, Naveira Garabato A C. 2013. Rapid cross–density ocean mixing at mid–depths in the Drake Passage measured by tracer release. Nature, 501 (7467): 408–411.

    Article  Google Scholar 

  • Whalen C B, Talley L D, MacKinnon J A. 2012. Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophysical Research Letters, 39 (18): L18612.

    Book  Google Scholar 

  • Wijesekera H, Padman L, Dillon T, Levine M, Paulson C, Pinkel R. 1993. The application of internal–wave dissipation models to a region of strong mixing. Journal of Physical Oceanography, 23 (2): 269–286.

    Article  Google Scholar 

  • Wolfe C L, Cessi P. 2011. The adiabatic pole–to–pole overturning circulation. Journal of Physical Oceanography, 41 (9): 1 795–1 810.

    Article  Google Scholar 

  • Wu L X, Jing Z, Riser S, Visbeck M. 2011. Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nature Geoscience, 4 (6): 363–366.

    Article  Google Scholar 

  • Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36: 281–314.

    Article  Google Scholar 

  • Wunsch C. 2002. What is the thermohaline circulation? Science, 298 (5596): 1 179–1 181.

    Article  Google Scholar 

  • Zhang J B, Schmitt R W, Huang R X. 1999. The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. Journal of Physical Oceanography, 29 (6): 1 096–1 108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Xu.

Additional information

Supported by Qingdao Pilot National Laboratory for Marine Science and Technology (No. 2018ASKJ01), the National Natural Science Foundation of China (Nos. 41676168, 41376028), the National Key Research and Development Program (Nos. 2016YFC1401004, 2016YFC1401008), the NSFC-Innovation Research Group of Sciences Fund (No. 41421005), Aoshan S&T Innovation Project from Qingdao Pilot National Laboratory for Marine Science and Technology, the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406401), and National Science Foundation for Young Scientists of China (No. 41606200)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Xu, Y. Spatial and seasonal variability of global ocean diapycnal transport inferred from Argo profiles. J. Ocean. Limnol. 37, 498–512 (2019). https://doi.org/10.1007/s00343-019-7290-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-019-7290-2

Keyword

Navigation