Skip to main content
Log in

How can saline and hypersaline lakes contribute to aquaculture development? A review

  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A considerable part of the world’s population is currently experiencing a severe scarcity of freshwater and nutrition. Inland aquaculture has the fastest growth in fresh waters, and this contributes to the eutrophication of freshwater bodies. The increase in freshwater aquaculture impacts on the increasing demand for fresh water. A way to overcome this is to develop aquaculture in saline lakes. This article discusses how saline and hypersaline lakes may contribute to overcome this problem and gives a list of fish and shrimp species that can be cultivated in saline lakes. Successful development of aquaculture depends on a healthy cultured stock of commercial fish and shrimps. A sustainable healthy stock of fish and shrimps can be only maintained using live food for the cultured fish larvae, fry and fingerlings. As well as Artemia spp. there are many other crustacean species with the potential for growing in hypersaline waters. At least 26 copepod species around the world can live at a salinity above 100 g/L with 12 species at a salinity higher than 200 g/L, and these all have excellent nutritional value. There is a high potential to use eukaryotic organisms of different taxa in saline / hypersaline aquaculture for food, agri-aquaculture, different industries and as food supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adshead S A M. 1992. Salt and Civilization. Macmillan, London. 417p.

    Book  Google Scholar 

  • Alexander K A, Potts T P, Freeman S, Israel D, Johansen J, Kletou D, Meland M, Pecorino D, Rebours C, Shorten M, Angel D L. 2015. The implications of aquaculture policy and regulation for the development of integrated multitrophic aquaculture in Europe. Aquaculture, 443: 16–23.

    Article  Google Scholar 

  • Amarouayache M, Derbal F, Kara M H. 2012. Note on the carcinological fauna associated with Artemia salina (Branchiopoda, Anostraca) from Sebkha Ez–Zemoul (northeast Algeria). Crustaceana, 85 (2): 129–137.

    Article  Google Scholar 

  • Annabi–Trabelsi N, Rebai R K, Ali M, Subrahmanyam M N V, Belmonte G, Ayadi H. 2018. Egg production and hatching success of Paracartia grani (Copepoda, Calanoida, Acartiidae) in two hypersaline ponds of a Tunisian Solar Saltern. J. Sea Res., 134: 1–9.

    Article  Google Scholar 

  • Anufriieva E V, Shadrin N V. 2014a. Factors determining the average body size of geographically separated Arctodiaptomus salinus (Daday, 1885) populations. Zool. Res., 35 (2): 132–141.

    Google Scholar 

  • Anufriieva E V, Shadrin N V. 2014b. Arctodiaptomus salinus (Daday, 1885) (Calanoida, Copepoda) in saline water bodies of the Crimea. Morskoi Ecologicheskii Zhurnal, 13 (3): 5–11. (in Russian)

    Google Scholar 

  • Anufriieva E V. 2015. Do copepods inhabit hypersaline waters worldwide? A short review and discussion. Chin. J. Oceanol. Limnol., 33 (6): 1 354–1 361.

    Article  Google Scholar 

  • Baschini M, Piovano E L, López–Galindo A, Dietrich D, Setti M. 2012. Muds and salts from Laguna Mar Chiquita (or Mar de Ansenuza), Córdoba, Argentina: natural materials with potential therapeutic uses. Anales de Hidrolog í a M é dica, 5 (2): 123–129.

    Google Scholar 

  • Bayly I A E. 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Ann. Rev. Ecol. Syst., 3 (1): 233–268.

    Article  Google Scholar 

  • Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T, Shadrin N V, Litvinchuk L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11–24.

    Google Scholar 

  • Briggs M, Funge–Smith S, Subasinghe R, Phillips M. 2004. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific. RAP Publication, Bangkok.

    Google Scholar 

  • Britton R H, Johnson A R. 1987. An ecological account of a Mediterranean salina: the Salin de Giraud, Camargue (S. France). Biol. Conserv., 42 (3): 185–230.

    Article  Google Scholar 

  • Chen J C, Lin J N. 1998. Osmotic concentration and tissue water of Penaeus chinensis juveniles reared at different salinity and temperature levels. Aquaculture, 164 (1–4): 173–181.

    Article  Google Scholar 

  • Dalla Via G J. 1986. Salinity responses of the juvenile penaeid shrimp Penaeus japonicus: I. oxygen consumption and estimations of productivity. Aquaculture, 55 (4): 297–306.

    Article  Google Scholar 

  • Das P, Mandal S C, Bhagabati S K, Akhtar M S, Singh S K. 2012. Important live food organisms and their role in aquaculture. Front. Aquacult., 5: 69–86.

    Google Scholar 

  • De Los Rios–Escalante P, Salgado I. 2012. Artemia (Crustacea, Anostraca) in Chile: a review of basic and applied biology. Lat. Am. J. Aquat. Res., 40 (3): 487–496.

    Article  Google Scholar 

  • Du S Y, Sun P X, Li J, Huo W H. 2006. Study on mineral black mud from Shanxi Yuncheng salt lake. Detergent & Cosmetics, 29 (3): 18–21. (in Chinese with English abstract)

    Google Scholar 

  • Duarte C M, Holmer M, Olsen Y, Soto D, Marba N, Guiu J, Black K, Karakassis I. 2009. Will the oceans help feed humanity? BioScience, 59 (11): 967–976.

    Article  Google Scholar 

  • Evjemo J O, Reitan K I, Olsen Y. 2003. Copepods as live food organisms in the larval rearing of halibut larvae ( Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227 (1–4): 191–210.

    Article  Google Scholar 

  • Fagbenro O A, Adedire C O, Owoseeni E A, Ayotunde E O. 1993. Studies on the biology and aquaculture potential of feral catfish Heterobranchus bidorsalis (Geoffroy St. Hilaire 1809) (Clariidae). Trop. Zool., 6 (1): 67–79.

    Article  Google Scholar 

  • FAO, IFAD, WFP. 2015. The state of food insecurity in the world 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Food and Agricultural Organization of the United Nations, Rome. 62p.

    Google Scholar 

  • FAO. 2009. The state of world fisheries and aquaculture 2008. FAO Fisheries and Aquaculture Department. Food and Agricultural Organization of the United Nations, Rome. 196p.

    Google Scholar 

  • FAO. 2014. The state of world fisheries and aquaculture 2014. Opportunities and challenges. Food and Agricultural Organization of the United Nations, Rome. 243p.

    Google Scholar 

  • FAO. 2015. FAO statistical pocketbook 2015: World food and agriculture. Food and Agriculture Organization of the United Nations, Rome. 236p.

    Google Scholar 

  • FAO. 2016. The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Food and Agricultural Organization of the United Nations, Rome. 190p.

    Google Scholar 

  • Findlay D L, Podemski C L, Kasian S E M. 2009. Aquaculture impacts on the algal and bacterial communities in a small boreal forest lake. Can. J. Fish. Aquat. Sci., 66 (11): 1 936–1 948.

    Article  Google Scholar 

  • Guerra–García J M, Baeza–Rojano E, Jiménez–Prada P, Calero–Cano S, Cervera J L. 2017. Trends in aquaculture today. Marine amphipods as alternative resource. Biodivers. J., 8 (2): 395–398.

    Google Scholar 

  • Hammer U T. 1986. Saline Lake Ecosystems of the World. Springer, Dordrecht. 616p.

    Google Scholar 

  • He Z H, Qin J G, Wang Y, Jiang H, Wen Z. 2001. Biology of Moina mongolica (Moinidae, Cladocera) and perspective as live food for marine fish larvae: review. Hydrobiologia, 457 (1–3): 25–37.

    Article  Google Scholar 

  • Hecht T, Vys W, Britz P J. 1988. The culture of the African sharptooth catfish ( Clarias gariepinus ) in Southern Africa. South African National Scientific Programmes. Report No. 153. Available at: http://www.nda.agric.za/doaDev/fisheries/03_areasofwork/Aquaculture/AquaAnd Environment/C%20%201gariepinus%20final%20BRBA. pdf. Accessed on 2017–09–19.

    Google Scholar 

  • Herrera A, Gómez M, Molina L, Otero F, Packard T. 2009. Advances in rearing techniques and analysis of nutritional quality of two mysids species present in Gran Canaria. Eur. Aquacult. Soc. Spec. Publ., 38: 171–174.

    Google Scholar 

  • Holling C S. 1978. Adaptive Environmental Assessment and Management. Wiley, London. 377p.

    Google Scholar 

  • Hotos G N, Vlahos N. 1998. Salinity tolerance of Mugil cephalus and Chelon labrosus (Pisces: Mugilidae) fry in experimental conditions. Aquaculture, 167 (3–4): 329–338.

    Article  Google Scholar 

  • Imsland A K, Foss A, Conceiçao L E C, Dinis M T, Delbare D, Schram E, Rema P, White P. 2003. A review of the culture potential of Solea solea and S. senegalensis. Rev. Fish Biol. Fish., 13 (4): 379–408.

    Article  Google Scholar 

  • Ivleva I V. 1969. Mass Cultivation of Invertebrates: Biology and Methods. Keter Press, Jerusalem. 158p.

    Google Scholar 

  • Jain A K, Mukherjee S C, Ayyappan S. 2003. Inland Salinewater Aquaculture: Research and Development. Indian Council of Agricultural Research, Mumbai. 58p.

    Google Scholar 

  • Jia Q X, Anufriieva E, Liu X F, Kong F J, Shadrin N. 2015a. Intentional introduction of Artemia sinica (Anostraca) in the high–altitude Tibetan Lake Dangxiong Co: the new population and consequences for the environment and for humans. Chin. J. Oceanol. Limnol., 33 (6): 1 451–1 460.

    Article  Google Scholar 

  • Jia Q X, Liu S S, Lv G J, Liu X F, Zhang Y S, Zheng M P. 2015b. Artemia population characteristics in different conditions, and environmental carrying capacity in small saline lakes in the Inner Mongolian desert. Acta Ecol. Sin., 35 (10): 3 364–3 375.

    Google Scholar 

  • Jiménez–Melero R, Gilbert J D, Guerrero F. 2013. Secondary production of Arctodiaptomus salinus in a shallow saline pond: comparison of methods. Mar. Ecol. Prog. Ser., 483: 103–116.

    Article  Google Scholar 

  • Johnson D W, Katavic I. 1986. Survival and growth of sea bass ( Dicentrarchus labrax ) larvae as influenced by temperature, salinity, and delayed initial feeding. Aquaculture, 52 (1): 11–19.

    Article  Google Scholar 

  • Kavembe G D, Meyer A, Wood C M. 2016. Fish populations in East African saline lakes. In: Schagerl M ed. Soda La kes of East Africa. Springer, Cham. p.227–257.

    Book  Google Scholar 

  • Khlebovich V V, Aladin N V. 2010. The salinity factor in animal life. Herald Russ. Acad. Sci., 80 (3): 299–304.

    Article  Google Scholar 

  • Kilambi R V, Zdinak A. 1980. The effects of acclimation on the salinity tolerance of grass carp, Ctenopharyngodon idella (Cuv. and Val.). J. Fish Biol., 16 (2): 171–175.

    Article  Google Scholar 

  • Koehn J D. 2004. Carp ( Cyprinus carpio ) as a powerful invader in Australian waterways. Freshwater Biol., 49 (7): 882–894.

    Article  Google Scholar 

  • Kolkovski S. 2011. An overview on desert aquaculture in Australia. In: Crespi V, Lovatelli A eds. Aquaculture in Desert and Arid Lands: Development Constraints and Opportunities. FAO, Rome. p.39–60.

  • Kurlansky M. 2002. Salt: A World History. Walker, New York. 484p.

    Google Scholar 

  • Kurnakov N S, Kuznetsov V G, Dzens–Lytovsky A I, Ravich M I. 1936. The Crimean salt lakes. AN USSR Publ., Moscow. 278p. (in Russian).

    Google Scholar 

  • Likongwe J S, Stecko T D, Stauffer J R, Carline R F. 1996. Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromis niloticus (Linneaus). Aquaculture, 146 (1–2): 37–46.

    Article  Google Scholar 

  • Lovejoy P E. 1986. Salt of the Desert Sun: A History of Salt Production and Trade in the Central Sudan. Cambridge University Press, Cambridge. 368p.

    Google Scholar 

  • Ma’or Z E, Magdassi S, Efron D, Yehuda S. 1996. Dead Sea mineral–based cosmetics–facts and illusions. Isr. J. Med. Sci., 32 Suppl: S28–S35.

    Google Scholar 

  • Marzetz V, Koussoroplis A–M, Martin–Creuzburg D, Striebel M, Wacker A. 2017. Linking primary producer diversity and food quality effects on herbivores: A biochemical perspective. Sci. Rep., 7: 11 035, https://doi.org/10.1038/s41598–017–11183–3.

    Article  Google Scholar 

  • Mengistou S. 2016. Invertebrates of East African soda lakes. In: Schagerl M ed. Soda lakes of East Africa. Springer, Cham. p.205–226.

    Book  Google Scholar 

  • Oren A. 2010. Industrial and environmental applications of halophilic microorganisms. Environ. Technol., 31 (8–9): 825–834.

    Article  Google Scholar 

  • Poff N L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc., 16 (2): 391–409.

    Article  Google Scholar 

  • Resley M J, Webb K A, Holt G J. 2006. Growth and survival of juvenile cobia, Rachycentron canadum, at different salinities in a recirculating aquaculture system. Aquaculture, 253 (1–4): 398–407.

    Article  Google Scholar 

  • Reyes J C R, Monteón C J L, Urreta H C, Dosta M D C M, de Oca G A R M. 2017. Population growth and protein and energy content of Proales similis (Rotifera: Monogononta) reared at different salinities. Turk. J. Fish. Aquat. Sci., 17 (4): 767–775.

    Google Scholar 

  • Rozema J, Flowers T. 2008. Crops for a salinized world. Science, 322 (5907): 1 478–1 480.

    Article  Google Scholar 

  • Sahandi J. 2011. Natural food production for aquaculture: cultivation and nutrition of Chironomid larvae (Insecta, Diptera). AES Bioflux, 3 (3): 268–271.

    Google Scholar 

  • Sardella B A, Matey V, Cooper J, Gonzalez R J, Brauner C J. 2004. Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia ( Oreochromis mossambicus × O. urolepis hornorum ) exposed to hypersaline water. J. Exp. Biol., 207 (8): 1 399–1 413.

    Article  Google Scholar 

  • Schagerl M, Burian A. 2016. The ecology of African soda lakes: driven by variable and extreme conditions. In: Schagerl M ed. Soda Lakes of East Africa. Springer, Cham. p.295–320.

    Google Scholar 

  • Schagerl M, Renaut R W. 2016. Dipping into the soda lakes of East Africa. In: Schagerl M ed. Soda Lakes of East Africa. Springer, Cham. p.3–24.

    Book  Google Scholar 

  • Schmalenbach I, Buchholz F, Franke H D, Saborowski R. 2009. Improvement of rearing conditions for juvenile lobsters ( Homarus gammarus ) by co–culturing with juvenile isopods ( Idotea emarginata ). Aquaculture, 289 (3–4): 297–303.

    Article  Google Scholar 

  • Shaalan M, El–Mahdy M, Saleh M, El–Matbouli M. 2018. Aquaculture in Egypt: insights on the current trends and future perspectives for sustainable development. Rev. Fish. Sci. Aquacult., 26 (1): 99–110, https://doi.org/10.108 0/23308249.2017.1358696.

    Article  Google Scholar 

  • Shadrin N V, Anufriieva E V, Belyakov V P, Bazhora A I. 2017. Chironomidae larvae in hypersaline waters of the Crimea: diversity, distribution, abundance and production. The European Zoological Journal, 84 (1): 61–72, https://doi.org/10.1080/11250003.2016.1273974.

    Google Scholar 

  • Shadrin N V, Anufriieva E V. 2016. Why do we need to pay more attention to study the saline lakes? SILNews, 61: 10–11.

    Google Scholar 

  • Shadrin N V, Anufriieva E V. 2017. Size polymorphism and fluctuating asymmetry of Artemia (Branchiopoda: Anostraca) populations from the Crimea. Journal of Siberian Federal University Biology, 10 (1): 114–126.

    Article  Google Scholar 

  • Shadrin N V, El–Shabrawy G M, Anufriieva E V, Goher M E, Ragab E. 2016. Long–term changes of physicochemical parameters and benthos in Lake Qarun (Egypt): can we make a correct forecast of ecosystem future? Knowl. Manag. Aquat. Ecosyst., 417: 18, https://doi.org/10.1051/kmae/2016005.

    Article  Google Scholar 

  • Shadrin N V. 2017. Peculiarities of structure, functioning and dynamics of the salt lake. In: Zheng M, Deng T, Oren A eds. Introduction to Salt Lake Sciences. Science Press, Beijing. p.179–186.

  • Shadrin N, Zheng M P, Oren A. 2015. Past, present and future of saline lakes: research for global sustainable development. Chin. J. Ocea nol. Limnol., 33 (6): 1 349–1 353.

    Google Scholar 

  • Shadrin N. 2014. Alternative states of saline lake ecosystems and development of salinology. Acta Geol. Sin. (English Edition), 88 (S1): 434–435.

    Google Scholar 

  • Shaw P C, Mark K K. 1980. Chironomid farming—a means of recycling farm manure and potentially reducing water pollution in Hong Kong. Aquaculture, 21 (2): 155–163.

    Article  Google Scholar 

  • Shearer T R, Wagstaff S J, Calow R, Stewart J A, Muir J F, Haylor G S, Brooks A C. 1997. The potential for aquaculture using saline groundwater. BGS Technical Report WC/97/58. British Geological Survey, Keyworth, Nottingham. 235p.

    Google Scholar 

  • Tolonen K E, Leinonen K, Erkinaro J, Heino J. 2018. Ecological uniqueness of macroinvertebrate communities in high–latitude streams is a consequence of deterministic environmental filtering processes. Aquat. Ecol., 52 (1): 17–33.

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division. 2017. World Population Prospects: The 2017 Revision–Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248. 53p.

    Google Scholar 

  • Vijayan K K, Diwan A D. 1995. Influence of temperature, salinity, pH and light on molting and growth in the Indian white prawn Penaeus indicus (Crustacea: Decapoda: Penaeidae) under laboratory conditions. Asian Fish. Sci., 8: 63–72.

    Google Scholar 

  • Wang W N, Wang A L, Bao L, Wang J P, Liu Y, Sun R Y. 2004. Changes of protein–bound and free amino acids in the muscle of the freshwater prawn Macrobrachium nipponense in different salinities. Aquaculture, 233 (1–4): 561–571.

    Article  Google Scholar 

  • Williams E. 1999. The ethnoarchaeology of salt production at lake Cuitzeo, Michoacán, México. Latin American Antiquity, 10 (4): 400–414.

    Article  Google Scholar 

  • Williams W D. 1996. The largest, highest and lowest lakes of the world: saline lakes. I nternationale Vereinigung für Theoretische und Angewandte Limnologie: Verhandlungen, 26 (1): 61–79.

    Google Scholar 

  • Williams W D. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia, 381 (1–3): 191–201.

    Article  Google Scholar 

  • Williams W D. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia, 466 (1–3): 329–337.

    Article  Google Scholar 

  • WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO. 123p. http://unesdoc.unesco.org/images/0023/002318/231823E.pdf.

    Google Scholar 

  • Xie B, Yu K J. 2007. Shrimp farming in China: operating characteristics, environmental impact and perspectives. Ocean Coast. Manag., 50 (7): 538–550.

    Article  Google Scholar 

  • Zacharia S, Kakati V S. 2004. Optimal salinity and temperature for early developmental stages of Penaeus merguiensis De man. Aquaculture, 232 (1–4): 373–382.

    Article  Google Scholar 

  • Zheng M. 2014. Saline Lakes and Salt Basin Deposits in China. Science Press, Beijing. 321p.

    Google Scholar 

Download references

Acknowledgement

The author thanks three anonymous reviewers for valuable comments and Bindy Datson (Australia) for her help to improve English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Anufriieva.

Additional information

Supported by the Russian Academy of Sciences for the A. O. Kovalevsky Institute of Marine Biological Research of RAS

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anufriieva, E.V. How can saline and hypersaline lakes contribute to aquaculture development? A review. J. Ocean. Limnol. 36, 2002–2009 (2018). https://doi.org/10.1007/s00343-018-7306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-7306-3

Keyword

Navigation