Journal of Oceanology and Limnology

, Volume 36, Issue 3, pp 601–611 | Cite as

Response of the North Pacific Oscillation to global warming in the models of the Intergovernmental Panel on Climate Change Fourth Assessment Report

  • Zheng Chen (陈峥)Email author
  • Bolan Gan (甘波澜)
  • Lixin Wu (吴立新)


Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.


North Pacific Oscillation (NPO) greenhouse gas warming CMIP3 climate models atmospheric baroclinicity climate change empirical orthogonal function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge various modeling groups for making their simulations available for analysis, as well as the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP3/IPCC AR4 model output.


  1. Ashok K, Behera S K, Rao S A, Weng H Y, Yamagata T. 2007. ElNiño Modoki and its possible teleconnection. J. Geophys. Res., 112 (C11): C11007.CrossRefGoogle Scholar
  2. Branstator G W. 1995. Organization of storm track anomalies by recurring low-frequency circulation anomalies. J. Atmos. Sci., 52 (2): 207–226.CrossRefGoogle Scholar
  3. Cai M, Yang S, Van den Dool H M, Kousky V E. 2007. Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective. Tellus A: Dynamic Meteorology and Oceanography, 59 (1): 127–140.CrossRefGoogle Scholar
  4. Chhak K C, Di Lorenzo E, Schneider N, Cummins P F. 2009. Forcing of low-frequency ocean variability in the Northeast Pacific. J. Climate, 22 (5): 1 255–1 276.CrossRefGoogle Scholar
  5. Compo G P, Whitaker, J S, Sardeshmukh P D, Matsui N, Allan R J, Yin X, Gleason B E, Vose R S, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel R I, Grant A N, Groisman P Y, Jones P D, Kruk M C, Kruger A C, Marshall G J, Maugeri M, Mok H Y, Nordli Ø, Ross T F, Trigo R M, Wang X L, WoodruffS D, Worley S J. 2011. The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137 (654): 1–28.CrossRefGoogle Scholar
  6. Di Lorenzo E, Cobb K M, Furtado J C, Schneider N, Anderson B T, Bracco A, Alexander M A, Vimont D J. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat. Geosci., 3 (11): 762–765.CrossRefGoogle Scholar
  7. Di Lorenzo E, Combes V, Keister J E, Strub P T, Thomas A C, Franks P J S, Ohman M D, Furtado J C, Bracco A, Bograd S J, Peterson W T, Schwing F B, Chiba S, Taguchi B, Hormazabal S, Parada C. 2013. Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography, 26 (4): 68–81.CrossRefGoogle Scholar
  8. Di Lorenzo E, Schneider N, Cobb K M, Franks P J S, Chhak K, Miller A J, McWilliams J C, Bograd S J, Arango H, Curchitser E, Powell T M, Rivière P. 2008. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett., 35 (8): L08607.CrossRefGoogle Scholar
  9. Hannachi A, Jolliffe I T, Stephenson D B. 2007. Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol., 27 (9): 1 119–1 152.CrossRefGoogle Scholar
  10. Hoskins B J, James I N, White G H. 1983. The shape, propagation and mean-flow interaction of large-scale weather systems. J. Atmos. Sci., 40 (7): 1 595–1 612.CrossRefGoogle Scholar
  11. Lau N C. 1988. Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J. Atmos. Sci., 45 (19): 2 718–2 743.CrossRefGoogle Scholar
  12. Linkin M E, Nigam S. 2008. The North Pacific Oscillation-West Pacific teleconnection pattern: mature-phase structure and winter impacts. J. Climate, 21 (9): 1 979–1 997.CrossRefGoogle Scholar
  13. Lorenz E N. 1956. Empirical orthogonal functions and statistical weather prediction. Department of Meteorology, Scientific Report No.1, MIT, Cambridge. p.1-49.Google Scholar
  14. Mak M, Cai M. 1989. Local barotropic instability. J. Atmos. Sci., 46 (21): 3 289–3 311.CrossRefGoogle Scholar
  15. Nakamura H. 1992. Midwinter suppression of baroclinic wave activity in the Pacific. J. Atmos. Sci., 49 (17): 1 629–1 642.CrossRefGoogle Scholar
  16. Nigam S. 2003. Teleconnections. In: Holton J R, Pyle J A, Curry J A eds. Encyclopedia of Atmospheric Sciences. Academic Press, London. p.2 243–2 269.Google Scholar
  17. Rogers J C. 1990. Patterns of low-frequency monthly sea level pressure variability (1899-1986) and associated wave cyclone frequencies. J. Climate, 3 (12): 1 364–1 379.CrossRefGoogle Scholar
  18. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L. 2007. Climate Change 2007: the Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge UK. Google Scholar
  19. Vallis G K, Gerber E P, Kushner P J, Cash B A. 2004. A mechanism and simple dynamical model of the North Atlantic Oscillation and annular modes. J. Atmos. Sci., 61 (3): 264–280.CrossRefGoogle Scholar
  20. Vimont D J, Wallace J M, Battisti D S. 2003. The seasonal footprinting mechanism in the Pacific: implications for ENSO. J. Climate, 1 6 (16): 2 668–2 675.CrossRefGoogle Scholar
  21. Walker G T, Bliss E W. 1932. World weather V. Mem. Roy. Meteor. Soc., 44: 53–84.Google Scholar
  22. Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109 (4): 784–812.CrossRefGoogle Scholar
  23. Wettstein J J, Wallace J M. 2010. Observed patterns of monthto-month storm-track variability and their relationship to the background flow. J. Atmos. Sci., 67 (5): 1 420–1 437.CrossRefGoogle Scholar
  24. Yu J Y, Kim S T. 2011. Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J. Climate, 24 (3): 708–720.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zheng Chen (陈峥)
    • 1
    Email author
  • Bolan Gan (甘波澜)
    • 1
  • Lixin Wu (吴立新)
    • 1
  1. 1.Physical Oceanography Laboratory/CIMSTOcean University of China, and Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations