Skip to main content
Log in

A comparison between benthic gillnet and bottom trawl for assessing fish assemblages in a shallow eutrophic lake near the Changjiang River estuary

  • Aquaculture and Fisheries
  • Published:
Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Two fishing methods including gillnetting and trawling to estimate attributes of fish assemblage were compared in Dianshan Lake from August 2009 to July 2010. Species composition differed significantly between the gears, with four significant contributors in gillnet catches and one in trawl catches. Trawling collected more proportions of benthic species by number and biomass than gillnetting. Size distribution was significantly influenced by fishing technique; gillnetting captured relatively less small-sized fishes and trawling captured less large-sized individuals. Trawling produced species richness closer to the one expected than gillnetting. On the whole, trawl catch was a quadratic polynomial function of gillnet catch and a significantly negative correlation was found between them, both of which varied as different polynomial functions of temperature. However, trawl and gillnet catches were significantly correlated only in one of five month groups. It is concluded that single-gear-based surveys can be misleading in assessments of attributes of fish assemblages, bottom trawling is a more effective gear for assessing fish diversity than benthic gillnetting, and using gillnet catches as an indicator of fish density depends on fishing season in the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achleitner D, Gassner H, Luger M. 2012. Comparison of three standardised fish sampling methods in 14 alpine lakes in Austria. Fish. Manag e. Ecol., 19 (4): 352–361.

    Article  Google Scholar 

  • Aho K, Roberts D W, Weaver T. 2008. Using geometric and non-geometric internal evaluators to compare eight vegetation classification methods. J. Veg. Sci., 19 (4): 549–562.

    Article  Google Scholar 

  • Bethke E, Arrhenius F, Cardinale M, Håkansson N. 1999. Comparison of the selectivity of three pelagic sampling trawls in a hydroacoustic survey. Fish. Res., 44 (1): 15–23.

    Article  Google Scholar 

  • Bobori D C, Salvarina I. 2010. Seasonal variation of fish abundance and biomass in gillnet catches of an East Mediterranean lake: Lake Doirani. J. Environ. Biol., 31 (6): 995–1000.

    Google Scholar 

  • Bonar S A, Hubert W A, Willis D W. 2009. Standard Methods for Sampling North American Freshwater Fishes. American Fisheries Society, Bethesda, Maryland.

    Google Scholar 

  • Casado P, Cutillas P R. 2011. A self-validating quantitative mass spectrometry method for assessing the accuracy of high-content phosphoproteomic experiments. Mol. Cell. Proteomics., 10(1): M110.003079.

    Google Scholar 

  • Chen Y Y. 1998. Fauna Sinica, Osteichthyes, Cypriniformes II. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Clarke K R, Gorley R N. 2001. PRIMER Version 5.0: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UK.

    Google Scholar 

  • Clement T A, Pangle K, Uzarski D G, Murry B A. 2014. Effectiveness of fishing gears to assess fish assemblage size structure in small lake ecosystems. Fish. Manag e. Ecol., 21 (3): 211–219.

    Article  Google Scholar 

  • Colwell R K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and Application. Persistent URL<purl.oclc.org./estimates>.

    Google Scholar 

  • Dahm E, Hartman J, Jurvelius J, Löffler H, Völzke V. 1992. Review of the European Inland Fisheries Advisory Commission (EIFAC) experiments on stock assessment in lakes. J. Appl. Ichthyol., 8 (1-4): 1–9.

    Article  Google Scholar 

  • Deceliere-Vergès C, Guillard J. 2008. Assessment of the pelagic fish populations using CEN multi-mesh gillnets: consequences for the characterization of the fish communities. Knowl. Managt. Aquatic Ecosyst., 389 (4): 1–16.

    Google Scholar 

  • Dennerline D E, Jennings C A, Degan D J. 2012. Relationships between hydroacoustic derived density and gill net catch: implications for fish assessments. Fish. Res., 123-124: 78–89.

    Article  Google Scholar 

  • Dufrêne M, Legendre P. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67 (3): 345–366.

    Google Scholar 

  • East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Science, Shanghai Fisheries Research Institute. 1990. The Fishes of Shanghai Area. Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese)

  • Elliott J M, Fletcher J M. 2001. A comparison of three methods for assessing the abundance of Arctic charr, Salvelinus alpinus, in Windermere (northwest England). Fish. Res., 53(1): 39–46.

    Article  Google Scholar 

  • Eros T, Specziár A, Bíró P. 2009. Assessing fish assemblages in reed habitats of a large shallow lake—a comparison between gillnetting and electric fishing. Fish. Res., 96 (1): 70–76.

    Article  Google Scholar 

  • Growns I O, Pollard D A, Harris J H. 1996. A comparison of electric fishing and gillnetting to examine the effects of anthropogenic disturbance on riverine fish communities. Fish. Manage. Ecol., 3 (1): 13–24.

    Article  Google Scholar 

  • Halkidi M, Batistakis Y, Vazirgiannis M. 2001. On clustering validation techniques. J. Intell. Inf. Syst., 17 (2-3): 107–145.

    Article  Google Scholar 

  • Hamley J M. 1975. Review of gillnet selectivity. Journal of the Fisheries Research Board of Canada, 32 (11): 1943–1969.

    Article  Google Scholar 

  • Hansson S, Rudstam L G. 1995. Gillnet catches as an estimate of fish abundance: a comparison between vertical gillnet catches and hydroacoustic abundances of Baltic Sea herring (Clupea harengus) and sprat (Sptattus sptattus). Can. J. Fish. Aquat. Sci., 52 (1): 75–83.

    Article  Google Scholar 

  • Huse I, Løkkeborg S, Soldal A V. 2000. Relative selectivity in trawl, longline and gillnet fisheries for cod and haddock. ICES. J. Mar. Sci., 57 (4): 1271–1282.

    Article  Google Scholar 

  • Jurvelius J, Kolari I, Leskelä A. 2011. Quality and status of fish stocks in lakes: gillnetting, seining, trawling and hydroacoustics as sampling methods. Hydrobiologia, 660 (1): 29–36.

    Article  Google Scholar 

  • Kubecka J, Hohausová E, Matena J, Peterka J, Amarasinghe U S, Bonar S A, Hateley J, Hickley P, Suuronen P, Tereschenko V, Welcomme R, Winfield I J. 2009. The true picture of a lake or reservoir fish stock: a review of needs and progress. Fish. Res., 96 (1): 1–5.

    Article  Google Scholar 

  • Lapointe N W R, Corkum L D, Mandrak N E. 2006. A comparison of methods for sampling fish diversity in shallow offshore waters of large rivers. N orth Am. J. Fish. Manage., 26 (3): 503–513.

    Article  Google Scholar 

  • Linløkken A, Haugen T O. 2006. Density and temperature dependence of gill net catch per unit effort for perch, Perca fluviatilis, and roach, Rutilus rutilus. Fish. Manage. Ecol., 13 (4): 261–269.

    Article  Google Scholar 

  • Mehner T, Schulz M. 2002. Monthly variability of hydroacoustic fish stock estimates in a deep lake and its correlation to gillnet catches. J. Fish. Biol., 61 (5): 1109–1121.

    Article  Google Scholar 

  • Moreno C E, Halffter G. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. J. Appl. Ecol., 37 (1): 149–158.

    Article  Google Scholar 

  • Neumann R M, Willis D W. 1995. Seasonal variation in gillnet sample indexes for northern pike collected from a glacial prairie lake. N orth Am. J. Fish. Manage., 15 (4): 838–844.

    Article  Google Scholar 

  • Olin M, Kurkilahti M, Peitola P, Ruuhijärvi J. 2004. The effects of fish accumulation on the catchability of multimesh gillnet. Fish. Res., 68 (1-3): 135–147.

    Article  Google Scholar 

  • Olin M, Malinen T. 2003. Comparison of gillnet and trawl in diurnal fish community sampling. Hydrobiologia, 506 (1-3): 443–449.

    Article  Google Scholar 

  • Olin M, Malinen T, Ruuhijärvi J. 2009. Gillnet catch in estimating the density and structure of fish community— comparison of gillnet and trawl samples in a eutrophic lake. Fish. Res., 96 (1): 88–94.

    Article  Google Scholar 

  • Olin M, Tiainen J, Kurkilahti M, Rask M, Lehtonen H. 2016. An evaluation of gillnet CPUE as an index of perch density in small forest lakes. Fish. Res., 173: 20–25.

    Article  Google Scholar 

  • Peltonen H, Ruuhijärvi J, Malinen T, Horppila J. 1999. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis, hydroacoustics and gillnet CPUE. Fish. Res., 44 (1): 25–36.

    Article  Google Scholar 

  • Pope K L, Willis D W. 1996. Seasonal influences on freshwater fisheries sampling data. Rev. Fish. Sci., 4 (1): 57–73.

    Article  Google Scholar 

  • Prchalová M, Kubečka J, Říha M, Litvín R, Čech M, Frouzová J, Hladík M, Hohausová E, Peterka J, Vašek M. 2008. Overestimation of percid fishes (Percidae) in gillnet sampling. Fish. Res., 91 (1): 79–87.

    Article  Google Scholar 

  • Prchalová M, Kubečka J, Ríha M, Mrkvicka T, Vašek M, Juza T, Kratochvíl M, Peterka J, Draštík V, Krížek J. 2009. Size selectivity of standardized multimesh gillnets in sampling coarse European species. Fish. Res., 96(1): 51–57.

    Article  Google Scholar 

  • Prchalová M, Mrkvička T, Kubecka J, Peterka J, Čech M, Muška M, Kratochvíl M, Vašek M. 2010. Fish activity as determined by gillnet catch: a comparison of two reservoirs of different turbidity. Fish. Res., 102(3): 291–296.

    Article  Google Scholar 

  • Prchalová M, Mrkvička T, Peterka J, Čech M, Berec L, Kubecka J. 2011. A model of gillnet catch in relation to the catchable biomass, saturation, soak time and sampling period. Fish. Res., 107 (1-3): 201–209.

    Article  Google Scholar 

  • Prchalová M, Neal J W, Muñoz-Hincapié M, Juza T, Ríha M, Peterka J, Kubecka J. 2012. Comparison of gill nets and fixed-frame trawls for sampling threadfin shad in tropical reservoirs. T rans. Am. Fish. Soc., 141 (4): 1151–1160.

    Article  Google Scholar 

  • Prchalová M, Kubečka J, Ríha M, Čech M, Jůza T, Ketelaars H A, Kratochvíl M, Mrkvicka T, Peterkaa J, Vašeka M, Wagenvoort A J. 2013. Eel attacks—a new tool for assessing European eel (Anguilla anguilla) abundance and distribution patterns with gillnet sampling. Limnologica, 43 (3): 194–202.

    Article  Google Scholar 

  • Quinn G P, Keough M J. 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rotherham D, Johnson D D, Kesby C L, Gray C A. 2012. Sampling estuarine fish and invertebrates with a beam trawl provides a different picture of populations and assemblages than multi-mesh gillnets. Fish. Res., 123-124: 49–55.

    Article  Google Scholar 

  • Šmejkal M, Ricard D, Prchalová M, Ríha M, Muška M, Blabolil P, Cech M, Vašek M, Juza T, Monteoliva Herreras A, Encina L, Peterka J, Kubecka J. 2015. Biomass and abundance biases in European standard gillnet sampling. PLoS One, 10 (3): e0122437.

    Article  Google Scholar 

  • Tang M, Boisclair D. 1995. Relationship between respiration rate of juvenile brook trout (Salvelinus fontinalis), water temperature, and swimming characteristics. Can. J. Fis h. Aquat. Sci., 52 (10): 2138–2145.

    Article  Google Scholar 

  • Tremain D M, Adams D H. 1995. Seasonal variations in species diversity, abundance, and composition of fish communities in the northern Indian River Lagoon, Florida. B ull. Mar. Sci., 57 (1): 171–192.

    Google Scholar 

  • Van Den Avyle M J, Boxrucker J, Michaletz P, Vondracek B, Ploskey G R. 1995. Comparison of catch rate, length distribution, and precision of six gears used to sample reservoir shad populations. N orth Am. J. Fish. Manage., 15 (4): 940–955.

    Article  Google Scholar 

  • Young S S, Chiu T S, Shen S C. 1994. A revision of the family Engraulidae (Pisces) from Taiwan. Zool. Stud., 33 (3): 217–227.

    Google Scholar 

  • Zweig C L, Kitchens W M. 2008. Effects of landscape gradients on wetland vegetation communities: information for large-scale restoration. Wetlands, 28 (4): 1086–1096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjun Hu  (胡忠军).

Additional information

Supported by the Science and Technology Commission of Shanghai Municipality (Nos. 08DZ1203101, 08DZ1203102) and the Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (No. ZF1206)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Q., Chen, L. et al. A comparison between benthic gillnet and bottom trawl for assessing fish assemblages in a shallow eutrophic lake near the Changjiang River estuary. J. Ocean. Limnol. 36, 572–586 (2018). https://doi.org/10.1007/s00343-018-6219-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-018-6219-5

Keyword

Navigation