Skip to main content
Log in

Physicochemical conditions in affecting the distribution of spring phytoplankton community

  • Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen C S, Zhu J R, Beardsley R C, Franks P J S. 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30(10): 1515.

    Article  Google Scholar 

  • Chen C T A. 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems, 78(3): 394–410.

    Article  Google Scholar 

  • Clarke K R, Gorley R N. 2001. PRIMER v5: User Manual/Tutorial. Primer-E Limited, Plymouth, UK.

    Google Scholar 

  • Cox E J. 1981. Observations on the morphology and vegetative cell division of the diatom Donkinia recta. Helgoländer Meeresuntersuchungen, 34(4): 497–506.

    Article  Google Scholar 

  • Dagg M, Benner R, Lohrenz S, Lawrence D. 2004. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Continental Shelf Research, 24(7–8): 833–858.

    Article  Google Scholar 

  • Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao S J. 2008. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences, 5(5): 1227–1244.

    Article  Google Scholar 

  • Duan L, Song J M, Li X G, Yuan H M, Xu S S. 2010. Distribution of selenium and its relationship to the ecoenvironment in Bohai Bay seawater. Marine Chemistr y, 121(1–4): 87–99.

    Article  Google Scholar 

  • Fei Z L, Mao X H, Zhu M Y, Li B, Li B H, Guan Y H, Zhang X S, Lv R H. 1988. Studies on the production in Bohai Sea II: evaluations of primary production and fish. Acta Oceanologica Sinica, 10(4): 481–489. (in Chinese)

    Google Scholar 

  • Gao H W, Feng S Z, Guan Y P. 1998. Modelling annual cycles of primary production in different regions of the Bohai Sea. Fisheries Oceanography, 7(3–4): 258–264.

    Article  Google Scholar 

  • Gao X L, Chen C T A. 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6): 1901–1911.

    Article  Google Scholar 

  • Gao X L, Zhou F X, Chen C T A. 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environment Internationa l, 62: 12–30.

    Google Scholar 

  • Guo S J, Feng Y Y, Wang L, Dai M H, Liu Z L, Bai Y, Sun J. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516: 103–126.

    Article  Google Scholar 

  • Hall N S, Whipple A C, Paerl H W. 2015. Vertical spatiotemporal patterns of phytoplankton due to migration behaviors in two shallow, microtidal estuaries: influence on phytoplankton function and structure. Estuarine, Coastal and Shelf Scienc e, 162: 7–21.

    Article  Google Scholar 

  • Hamm C E, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421(6925): 841–843.

    Article  Google Scholar 

  • Harris A S D, Medlin L K, Lewis J, Jones K J. 1995. Thalassiosira species (Bacillariophyceae) from a Scottish sea-loch. European Journal of Phycology, 30(2): 117–131.

    Article  Google Scholar 

  • Harrison P J, Yin K, Lee J H W, Gan J P, Liu H B. 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28(12): 1405–1415.

    Article  Google Scholar 

  • Jenkin P M. 1937. Oxygen production by the diatom Coscinodiscus excentricu s Ehr. in relation to submarine illumination in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 22(1): 301–343.

    Article  Google Scholar 

  • Jiang Z B, Chen J F, Zhou F, Shou L, Chen Q Z, Tao B Y, Yan X J, Wang K. 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Continental Shelf Research, 101: 71–84.

    Article  Google Scholar 

  • Justić D, Rabalais N N, Turner R E, Dortch Q. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3): 339–356.

    Article  Google Scholar 

  • Klausmeier C A, Litchman E. 2001. Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography, 46(8): 1998–2007.

    Article  Google Scholar 

  • Lebour M V. 1930. The Planktonic Diatoms of Northern Seas (Vol. 55). The Ray Society, London.

    Google Scholar 

  • Li J, Glibert P M, Zhou M J, Lu S H, Lu D D. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series, 383: 11–26.

    Article  Google Scholar 

  • Lin C L, Ning X R, Su J L, Lin Y, Xu B. 2005. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000. Journal of Marine Systems, 55(3–4): 223–234.

    Article  Google Scholar 

  • Liu D Y, Sun J, Liu Z, Chen H T, Wei H, Zhang J. 2004. The effects of spring-neap tide on the phytoplankton community development in the Jiaozhou Bay, China. Acta Oceanologica Sinica, 23(4): 687–697.

    Google Scholar 

  • Liu H J, Huang Y J, Zhai W D, Guo S J, Jin H L, Sun J. 2015. Phytoplankton communities and its controlling factors in summer and autumn in the southern Yellow Sea, China. Acta Oceanologica Sinica, 34(2): 114–123.

    Article  Google Scholar 

  • Luan Q S, Sun J, Shen Z L, Song S Q, Wang M. 2006. Phytoplankton assemblage of Yangtze River Estuary and the adjacent East China Sea in summer, 2004. Journal of Ocean University of China, 5(2): 123–131.

    Article  Google Scholar 

  • Lv X C, Yuan D K, Ma X D, Tao J H. 2014. Wave characteristics analysis in Bohai Sea based on ECMWF wind field. Ocean Engineering, 91: 159–171.

    Article  Google Scholar 

  • Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1(4): 493–509.

    Google Scholar 

  • McQuoid M R, Hobson L A. 1998. Assessment of palaeoenvironmental conditions on southern Vancouver Island, British Columbia, Canada, using the marine tychoplankter Paralia sulcata. Diatom Research, 13(2): 311–321.

    Article  Google Scholar 

  • McQuoid M R, Nordberg K. 2003. The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science, 56(2): 339–354.

    Article  Google Scholar 

  • Menden-Deuer S, Lessard E J, Satterberg J, Grünbaum D. 2005. Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquatic Microbial Ecology, 41(2): 145–152.

    Article  Google Scholar 

  • Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea-a model-generated climatology. Continental Shelf Research, 21(6–7): 667–695.

    Article  Google Scholar 

  • Ning X R, Vaulot D, Lin Z S, Liu Z L. 1988. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtze River) and the adjacent East China Sea. Marine Ecology Progress Series, 49: 141–150.

    Article  Google Scholar 

  • Pai S C, Tsau Y J, Yang T I. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434(2): 209–216.

    Article  Google Scholar 

  • Richardson K. 1997. Harmful or exceptional phytoplankton blooms in the marine ecosystem. Advances in Marine Biology, 31: 301–385.

    Article  Google Scholar 

  • Schelske C L, Stoermer E F. 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 173(3995): 423–424.

    Article  Google Scholar 

  • Silva C A D, Train S, Rodrigues L C. 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia, 537(1–3): 99–109.

    Article  Google Scholar 

  • Smayda T J. 1980. Phytoplankton species succession. In: Morris I ed. The Physiological Ecology of Phytoplankton. Blackwell Scientific Publication, Oxford.

    Google Scholar 

  • Smetacek V S. 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84(3): 239–251.

    Article  Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley D J. 2009. The global biogeochemical silicon cycle. Silicon, 1(4): 207–213.

    Article  Google Scholar 

  • Su J L, Yuan Y L. 2005. Hydrology of China Sea. China Ocean Press, Beijing. (in Chinese)

    Google Scholar 

  • Su Y S, Weng X C. 1994. Water masses in China seas. In: Zhou D, Liang Y B, Zeng C K, Tseng C K eds. Oceanology of China Seas. Springer, Netherlands. p.3–16.

    Google Scholar 

  • Sun J, Gu X Y, Feng Y Y, Jin S F, Jiang W S, Jin H Y, Chen J F. 2014. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11(3): 779–806.

    Article  Google Scholar 

  • Sun J, Liu D Y, Yang S M, Guo J, Qian S B. 2001. The preliminary study on phytoplankton community structure in the central Bohai Sea and the Bohai Strait and its adjacent area. Oceanologia et Limnologia Sinica, 33(5): 461–471. (in Chinese with English abstract)

    Google Scholar 

  • Sun J, Liu D Y. 2003. The application of diversity indices in marine phytoplankton studies. Acta Oceanologica Sinica, 26(1): 62–75. (in Chinese with English abstract)

    Google Scholar 

  • Sun J, Yu Z G, Gao Y H, Zhou Q Q, Zhen Y, Chen H T, Zhao L Y, Yao Q Z, Mi T Z. 2010. Phytoplankton diversity in the East China Sea and Yellow Sea measured by PCR-DGGE and its relationships with environmental factors. Chinese Journal of Oceanology and Limnology, 28(2): 315–322.

    Article  Google Scholar 

  • Tang D L, Di B P, Wei G F, Ni I H, Oh I S, Wang S. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568(1): 245–253.

    Article  Google Scholar 

  • Thomas W H, Gibson C H. 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Research Part A. Oceanographic Research Papers, 37(10): 1583–1593.

    Article  Google Scholar 

  • Tillmann U, Hesse K J, Tillmann A. 1999. Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. Journal of Sea Research, 42(3): 255–261.

    Article  Google Scholar 

  • Tilman D, Mattson M, Langer S. 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. L imnology and Oceanography, 26(6): 1020–1033.

    Article  Google Scholar 

  • Tiselius P, Kuylenstierna B. 1996. Growth and decline of a diatom spring bloom phytoplankton species composition, formation of marine snow and the role of heterotrophic dinoflagellates. J ournal o f P lankton R esearch, 18(2): 133–155.

    Google Scholar 

  • Utermöhl V H. 1931. Neue wege in der quantitativen erfassung des planktons. Verh. Int. Verein. Theor. Angew. Limnol., 5: 567–595.

    Google Scholar 

  • Varela M, Bode A, Lorenzo J et al. 2006. The effect of the “Prestige” oil spill on the plankton of the N-NW Spanish coast. Marine Pollution Bulletin, 53(5–7): 272–286.

    Article  Google Scholar 

  • Wang B D, Wang X L, Zhan R. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127–136.

    Article  Google Scholar 

  • Wei H, Sun J, Moll A, Zhao L. 2004. Phytoplankton dynamics in the Bohai Sea-observations and modelling. Journal of Marine Systems, 44(3–4): 233–251.

    Article  Google Scholar 

  • Xing Q G, Meng R L, Lou M J, Bing L, Liu X. 2015. Remote sensing of ships and offshore oil platforms and mapping the marine oil spill risk source in the Bohai Sea. Aquatic Procedia, 3: 127–132.

    Article  Google Scholar 

  • Yang D Z, Yin B S, Liu Z L, Feng X R. 2011. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer. Journal of Geophysical Research, 116(C5): C05015.

    Article  Google Scholar 

  • Yu Z G, Mi T Z, Xie B D, Yao Q Z, Zhang J. 2000. Changes of the environmental parameters and their relationship in recent twenty years in the Bohai Sea. Marine Environmental Science, 19(1): 15–19. (in Chinese with English abstract)

    Google Scholar 

  • Zhang F, Chen Y J, Tian C G, Wang X P, Huang G P, Fang Y, Zong Z. 2014. Identification and quantification of shipping emissions in Bohai Rim, China. Science of the Total Environment, 497–498: 570–577.

    Article  Google Scholar 

  • Zhang J, Liu S M, Ren J L, Wu Y, Zhang G L. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74(4): 449–478.

    Article  Google Scholar 

  • Zhang R J, Tang J H, Li J, Zheng Q, Liu D, Chen Y J, Zou Y D Chen X X, Luo C L, Zhang G. 2013. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: occurrence, distribution and ecological risks. Environmental Pollution, 174: 71–77.

    Article  Google Scholar 

  • Zhao B R, Fang G H, Cao D M. 1994. Numerical simulations of the tide and tidal currents in the Bohai Sea, the Yellow Sea and the East China Sea. Acta Oceanologica Sinica, 16(5): 1–10. (in Chinese)

    Google Scholar 

  • Zhou M J, Shen Z L, Yu R C. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28(12): 1483–1489.

    Article  Google Scholar 

  • Zhu Z Y, Ng W M, Liu S M, Zhang J, Chen J C, Wu Y. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84(3): 393–401.

    Article  Google Scholar 

  • Zong Y Q. 1997. Implications of Paralia sulcata abundance in Scottish isolation basins. Diatom Research, 12(1): 125–150.

    Article  Google Scholar 

  • Zou J Z, Dong L P, Qin B P. 1983. Preliminary analyze of seawater wealthy nutrients and red tide in the Bohai Sea. Marine Environmental Science, 2(2): 41–54. (in Chinese)

    Google Scholar 

Download references

Acknowledgement

We thank JIN Hualong for sampling, and the crew and captain of the RV/Dongfanghong 2 for logistic support during the cruise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sun  (孙军).

Additional information

Supported by the National Key Scientific Research Program (No. 2015CB954002), the National Natural Science Foundation of China (Nos. 41276124, 41676112), the University Innovation Team Training Program for Tianjin (No. TD12-5003), and the Cheung Kong Scholars Program and of China and Exploration Program of Ocean with Science and Technology of Tianjin (KJXH2013-22) to Jun Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Liu, H., Zhang, X. et al. Physicochemical conditions in affecting the distribution of spring phytoplankton community. Chin. J. Ocean. Limnol. 35, 1342–1361 (2017). https://doi.org/10.1007/s00343-017-6190-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6190-6

Keywords

Navigation