Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1342–1361 | Cite as

Physicochemical conditions in affecting the distribution of spring phytoplankton community

  • Yuqiu Wei (魏玉秋)
  • Haijiao Liu (刘海娇)
  • Xiaodong Zhang (张晓东)
  • Bing Xue (薛冰)
  • Sonia Munir
  • Jun Sun (孙军)


To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.


phytoplankton physicochemical conditions ecological provinces Bohai Sea Yellow Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank JIN Hualong for sampling, and the crew and captain of the RV/Dongfanghong 2 for logistic support during the cruise.


  1. Chen C S, Zhu J R, Beardsley R C, Franks P J S. 2003. Physical-biological sources for dense algal blooms near the Changjiang River. Geophysical Research Letters, 30(10): 1515.CrossRefGoogle Scholar
  2. Chen C T A. 2009. Chemical and physical fronts in the Bohai, Yellow and East China seas. Journal of Marine Systems, 78(3): 394–410.CrossRefGoogle Scholar
  3. Clarke K R, Gorley R N. 2001. PRIMER v5: User Manual/Tutorial. Primer-E Limited, Plymouth, UK.Google Scholar
  4. Cox E J. 1981. Observations on the morphology and vegetative cell division of the diatom Donkinia recta. Helgoländer Meeresuntersuchungen, 34(4): 497–506.CrossRefGoogle Scholar
  5. Dagg M, Benner R, Lohrenz S, Lawrence D. 2004. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes. Continental Shelf Research, 24(7–8): 833–858.CrossRefGoogle Scholar
  6. Dai M, Wang L, Guo X, Zhai W, Li Q, He B, Kao S J. 2008. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system: the Pearl River Estuary, China. Biogeosciences, 5(5): 1227–1244.CrossRefGoogle Scholar
  7. Duan L, Song J M, Li X G, Yuan H M, Xu S S. 2010. Distribution of selenium and its relationship to the ecoenvironment in Bohai Bay seawater. Marine Chemistr y, 121(1–4): 87–99.CrossRefGoogle Scholar
  8. Fei Z L, Mao X H, Zhu M Y, Li B, Li B H, Guan Y H, Zhang X S, Lv R H. 1988. Studies on the production in Bohai Sea II: evaluations of primary production and fish. Acta Oceanologica Sinica, 10(4): 481–489. (in Chinese)Google Scholar
  9. Gao H W, Feng S Z, Guan Y P. 1998. Modelling annual cycles of primary production in different regions of the Bohai Sea. Fisheries Oceanography, 7(3–4): 258–264.CrossRefGoogle Scholar
  10. Gao X L, Chen C T A. 2012. Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46(6): 1901–1911.CrossRefGoogle Scholar
  11. Gao X L, Zhou F X, Chen C T A. 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environment Internationa l, 62: 12–30.Google Scholar
  12. Guo S J, Feng Y Y, Wang L, Dai M H, Liu Z L, Bai Y, Sun J. 2014. Seasonal variation in the phytoplankton community of a continental-shelf sea: the East China Sea. Marine Ecology Progress Series, 516: 103–126.CrossRefGoogle Scholar
  13. Hall N S, Whipple A C, Paerl H W. 2015. Vertical spatiotemporal patterns of phytoplankton due to migration behaviors in two shallow, microtidal estuaries: influence on phytoplankton function and structure. Estuarine, Coastal and Shelf Scienc e, 162: 7–21.CrossRefGoogle Scholar
  14. Hamm C E, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature, 421(6925): 841–843.CrossRefGoogle Scholar
  15. Harris A S D, Medlin L K, Lewis J, Jones K J. 1995. Thalassiosira species (Bacillariophyceae) from a Scottish sea-loch. European Journal of Phycology, 30(2): 117–131.CrossRefGoogle Scholar
  16. Harrison P J, Yin K, Lee J H W, Gan J P, Liu H B. 2008. Physical-biological coupling in the Pearl River Estuary. Continental Shelf Research, 28(12): 1405–1415.CrossRefGoogle Scholar
  17. Jenkin P M. 1937. Oxygen production by the diatom Coscinodiscus excentricu s Ehr. in relation to submarine illumination in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 22(1): 301–343.CrossRefGoogle Scholar
  18. Jiang Z B, Chen J F, Zhou F, Shou L, Chen Q Z, Tao B Y, Yan X J, Wang K. 2015. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent East China Sea shelf. Continental Shelf Research, 101: 71–84.CrossRefGoogle Scholar
  19. Justić D, Rabalais N N, Turner R E, Dortch Q. 1995. Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science, 40(3): 339–356.CrossRefGoogle Scholar
  20. Klausmeier C A, Litchman E. 2001. Algal games: the vertical distribution of phytoplankton in poorly mixed water columns. Limnology and Oceanography, 46(8): 1998–2007.CrossRefGoogle Scholar
  21. Lebour M V. 1930. The Planktonic Diatoms of Northern Seas (Vol. 55). The Ray Society, London.Google Scholar
  22. Li J, Glibert P M, Zhou M J, Lu S H, Lu D D. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series, 383: 11–26.CrossRefGoogle Scholar
  23. Lin C L, Ning X R, Su J L, Lin Y, Xu B. 2005. Environmental changes and the responses of the ecosystems of the Yellow Sea during 1976-2000. Journal of Marine Systems, 55(3–4): 223–234.CrossRefGoogle Scholar
  24. Liu D Y, Sun J, Liu Z, Chen H T, Wei H, Zhang J. 2004. The effects of spring-neap tide on the phytoplankton community development in the Jiaozhou Bay, China. Acta Oceanologica Sinica, 23(4): 687–697.Google Scholar
  25. Liu H J, Huang Y J, Zhai W D, Guo S J, Jin H L, Sun J. 2015. Phytoplankton communities and its controlling factors in summer and autumn in the southern Yellow Sea, China. Acta Oceanologica Sinica, 34(2): 114–123.CrossRefGoogle Scholar
  26. Luan Q S, Sun J, Shen Z L, Song S Q, Wang M. 2006. Phytoplankton assemblage of Yangtze River Estuary and the adjacent East China Sea in summer, 2004. Journal of Ocean University of China, 5(2): 123–131.CrossRefGoogle Scholar
  27. Lv X C, Yuan D K, Ma X D, Tao J H. 2014. Wave characteristics analysis in Bohai Sea based on ECMWF wind field. Ocean Engineering, 91: 159–171.CrossRefGoogle Scholar
  28. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1(4): 493–509.Google Scholar
  29. McQuoid M R, Hobson L A. 1998. Assessment of palaeoenvironmental conditions on southern Vancouver Island, British Columbia, Canada, using the marine tychoplankter Paralia sulcata. Diatom Research, 13(2): 311–321.CrossRefGoogle Scholar
  30. McQuoid M R, Nordberg K. 2003. The diatom Paralia sulcata as an environmental indicator species in coastal sediments. Estuarine, Coastal and Shelf Science, 56(2): 339–354.CrossRefGoogle Scholar
  31. Menden-Deuer S, Lessard E J, Satterberg J, Grünbaum D. 2005. Growth rates and starvation survival of three species of the pallium-feeding, thecate dinoflagellate genus Protoperidinium. Aquatic Microbial Ecology, 41(2): 145–152.CrossRefGoogle Scholar
  32. Naimie C E, Blain C A, Lynch D R. 2001. Seasonal mean circulation in the Yellow Sea-a model-generated climatology. Continental Shelf Research, 21(6–7): 667–695.CrossRefGoogle Scholar
  33. Ning X R, Vaulot D, Lin Z S, Liu Z L. 1988. Standing stock and production of phytoplankton in the estuary of the Changjiang (Yangtze River) and the adjacent East China Sea. Marine Ecology Progress Series, 49: 141–150.CrossRefGoogle Scholar
  34. Pai S C, Tsau Y J, Yang T I. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta, 434(2): 209–216.CrossRefGoogle Scholar
  35. Richardson K. 1997. Harmful or exceptional phytoplankton blooms in the marine ecosystem. Advances in Marine Biology, 31: 301–385.CrossRefGoogle Scholar
  36. Schelske C L, Stoermer E F. 1971. Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 173(3995): 423–424.CrossRefGoogle Scholar
  37. Silva C A D, Train S, Rodrigues L C. 2005. Phytoplankton assemblages in a Brazilian subtropical cascading reservoir system. Hydrobiologia, 537(1–3): 99–109.CrossRefGoogle Scholar
  38. Smayda T J. 1980. Phytoplankton species succession. In: Morris I ed. The Physiological Ecology of Phytoplankton. Blackwell Scientific Publication, Oxford.Google Scholar
  39. Smetacek V S. 1985. Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84(3): 239–251.CrossRefGoogle Scholar
  40. Struyf E, Smis A, Van Damme S, Meire P, Conley D J. 2009. The global biogeochemical silicon cycle. Silicon, 1(4): 207–213.CrossRefGoogle Scholar
  41. Su J L, Yuan Y L. 2005. Hydrology of China Sea. China Ocean Press, Beijing. (in Chinese)Google Scholar
  42. Su Y S, Weng X C. 1994. Water masses in China seas. In: Zhou D, Liang Y B, Zeng C K, Tseng C K eds. Oceanology of China Seas. Springer, Netherlands. p.3–16.Google Scholar
  43. Sun J, Gu X Y, Feng Y Y, Jin S F, Jiang W S, Jin H Y, Chen J F. 2014. Summer and winter living coccolithophores in the Yellow Sea and the East China Sea. Biogeosciences, 11(3): 779–806.CrossRefGoogle Scholar
  44. Sun J, Liu D Y, Yang S M, Guo J, Qian S B. 2001. The preliminary study on phytoplankton community structure in the central Bohai Sea and the Bohai Strait and its adjacent area. Oceanologia et Limnologia Sinica, 33(5): 461–471. (in Chinese with English abstract)Google Scholar
  45. Sun J, Liu D Y. 2003. The application of diversity indices in marine phytoplankton studies. Acta Oceanologica Sinica, 26(1): 62–75. (in Chinese with English abstract)Google Scholar
  46. Sun J, Yu Z G, Gao Y H, Zhou Q Q, Zhen Y, Chen H T, Zhao L Y, Yao Q Z, Mi T Z. 2010. Phytoplankton diversity in the East China Sea and Yellow Sea measured by PCR-DGGE and its relationships with environmental factors. Chinese Journal of Oceanology and Limnology, 28(2): 315–322.CrossRefGoogle Scholar
  47. Tang D L, Di B P, Wei G F, Ni I H, Oh I S, Wang S. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568(1): 245–253.CrossRefGoogle Scholar
  48. Thomas W H, Gibson C H. 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Research Part A. Oceanographic Research Papers, 37(10): 1583–1593.CrossRefGoogle Scholar
  49. Tillmann U, Hesse K J, Tillmann A. 1999. Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. Journal of Sea Research, 42(3): 255–261.CrossRefGoogle Scholar
  50. Tilman D, Mattson M, Langer S. 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. L imnology and Oceanography, 26(6): 1020–1033.CrossRefGoogle Scholar
  51. Tiselius P, Kuylenstierna B. 1996. Growth and decline of a diatom spring bloom phytoplankton species composition, formation of marine snow and the role of heterotrophic dinoflagellates. J ournal o f P lankton R esearch, 18(2): 133–155.Google Scholar
  52. Utermöhl V H. 1931. Neue wege in der quantitativen erfassung des planktons. Verh. Int. Verein. Theor. Angew. Limnol., 5: 567–595.Google Scholar
  53. Varela M, Bode A, Lorenzo J et al. 2006. The effect of the “Prestige” oil spill on the plankton of the N-NW Spanish coast. Marine Pollution Bulletin, 53(5–7): 272–286.CrossRefGoogle Scholar
  54. Wang B D, Wang X L, Zhan R. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127–136.CrossRefGoogle Scholar
  55. Wei H, Sun J, Moll A, Zhao L. 2004. Phytoplankton dynamics in the Bohai Sea-observations and modelling. Journal of Marine Systems, 44(3–4): 233–251.CrossRefGoogle Scholar
  56. Xing Q G, Meng R L, Lou M J, Bing L, Liu X. 2015. Remote sensing of ships and offshore oil platforms and mapping the marine oil spill risk source in the Bohai Sea. Aquatic Procedia, 3: 127–132.CrossRefGoogle Scholar
  57. Yang D Z, Yin B S, Liu Z L, Feng X R. 2011. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer. Journal of Geophysical Research, 116(C5): C05015.CrossRefGoogle Scholar
  58. Yu Z G, Mi T Z, Xie B D, Yao Q Z, Zhang J. 2000. Changes of the environmental parameters and their relationship in recent twenty years in the Bohai Sea. Marine Environmental Science, 19(1): 15–19. (in Chinese with English abstract)Google Scholar
  59. Zhang F, Chen Y J, Tian C G, Wang X P, Huang G P, Fang Y, Zong Z. 2014. Identification and quantification of shipping emissions in Bohai Rim, China. Science of the Total Environment, 497–498: 570–577.CrossRefGoogle Scholar
  60. Zhang J, Liu S M, Ren J L, Wu Y, Zhang G L. 2007. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and reevaluation of budgets for the East China Sea Shelf. Progress in Oceanography, 74(4): 449–478.CrossRefGoogle Scholar
  61. Zhang R J, Tang J H, Li J, Zheng Q, Liu D, Chen Y J, Zou Y D Chen X X, Luo C L, Zhang G. 2013. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China: occurrence, distribution and ecological risks. Environmental Pollution, 174: 71–77.CrossRefGoogle Scholar
  62. Zhao B R, Fang G H, Cao D M. 1994. Numerical simulations of the tide and tidal currents in the Bohai Sea, the Yellow Sea and the East China Sea. Acta Oceanologica Sinica, 16(5): 1–10. (in Chinese)Google Scholar
  63. Zhou M J, Shen Z L, Yu R C. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28(12): 1483–1489.CrossRefGoogle Scholar
  64. Zhu Z Y, Ng W M, Liu S M, Zhang J, Chen J C, Wu Y. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84(3): 393–401.CrossRefGoogle Scholar
  65. Zong Y Q. 1997. Implications of Paralia sulcata abundance in Scottish isolation basins. Diatom Research, 12(1): 125–150.CrossRefGoogle Scholar
  66. Zou J Z, Dong L P, Qin B P. 1983. Preliminary analyze of seawater wealthy nutrients and red tide in the Bohai Sea. Marine Environmental Science, 2(2): 41–54. (in Chinese)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yuqiu Wei (魏玉秋)
    • 1
    • 2
  • Haijiao Liu (刘海娇)
    • 3
  • Xiaodong Zhang (张晓东)
    • 1
    • 2
  • Bing Xue (薛冰)
    • 1
    • 2
  • Sonia Munir
    • 1
    • 2
  • Jun Sun (孙军)
    • 1
    • 2
  1. 1.College of Marine and Environmental SciencesTianjin University of science and TechnologyTianjinChina
  2. 2.Tianjin Key Laboratory of Marine Resources and ChemistryTianjin University of Science and TechnologyTianjinChina
  3. 3.Institute of Marine Science and TechnologyShandong UniversityJinanChina

Personalised recommendations