Skip to main content
Log in

Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to small-scale turbulence

  • Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Turbulent mixing, in particular on a small scale, affects the growth of microalgae by changing diffusive sublayers and regulating nutrient fluxes of cells. We tested the nutrient flux hypothesis by evaluating the cellular stoichiometry and phosphorus storage of microalgae under different turbulent mixing conditions. Aphanizomenon flos-aquae were cultivated in different stirring batch reactors with turbulent dissipation rates ranging from 0.001 51 m2/s3 to 0.050 58 m2/s3, the latter being the highest range observed in natural aquatic systems. Samples were taken in the exponential growth phase and compared with samples taken when the reactor was completely stagnant. Results indicate that, within a certain range, turbulent mixing stimulates the growth of A. flos-aquae. An inhibitory effect on growth rate was observed at the higher range. Photosynthesis activity, in terms of maximum effective quantum yield of PSII (the ratio of Fv/Fm) and cellular chlorophyll a, did not change significantly in response to turbulence. However, Chl a/C mass ratio and C/N molar ratio, showed a unimodal response under a gradient of turbulent mixing, similar to growth rate. Moreover, we found that increases in turbulent mixing might stimulate respiration rates, which might lead to the use of polyphosphate for the synthesis of cellular constituents. More research is required to test and verify the hypothesis that turbulent mixing changes the diffusive sublayer, regulating the nutrient flux of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayata S D, Lévy M, Aumont O, Resplandy L, Tagliabue A, Sciandra A, Bernard O. 2014. Phytoplankton plasticity drives large variability in carbon fixation efficiency. Geophys. Res. Lett., 41(24): 8994–9000.

    Article  Google Scholar 

  • Dickman E M, Vanni M J, Horgan M J. 2006. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia, 149(4): 676–689.

    Article  Google Scholar 

  • Ebert U, Arrayás M, Temme N, Sommeijer B, Huisman J. 2001. Critical conditions for phytoplankton blooms. Bull. Math. Biol., 63(6): 1095–1124.

    Article  Google Scholar 

  • Eixler S, Karsten U, Selig U. 2006. Phosphorus storage in Chlorella vulgaris (Trebouxiophyceae, Chlorophyta) cells and its dependence on phosphate supply. Phycologia, 45(1): 53–60.

    Article  Google Scholar 

  • Eixler S, Selig U, Karsten U. 2005. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia, 533(1-3): 135–143.

    Article  Google Scholar 

  • Elliott J A. 2010. The seasonal sensitivity of Cyanobacteria and other phytoplankton to changes in flushing rate and water temperature. Global Change Biol., 16(2): 864–876.

    Article  Google Scholar 

  • Estrada M, Berdalet E. 1997. Phytoplankton in a turbulent world. Scientia Marina, 61 (S1): 125–140.

    Google Scholar 

  • Gallardo Rodríguez J J, Sánchez Mirón A, García Camacho F, Cerón García M C, Belarbi E H, Chisti Y, Molina Grima E. 2009. Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biote chnology Progress, 25(3): 792–800.

    Article  Google Scholar 

  • Guillard R R L. 1973. Division rates. In: Stein J R ed. Handbook of Phycological Methods. I. Culture Methods and Growth Measurements. Cambridge University Press, Cambridge. p.289–312.

    Google Scholar 

  • Halsey K H, Jones B M. 2015. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci., 7(1): 265–297.

    Article  Google Scholar 

  • Halsey K H, Milligan A J, Behrenfeld M J. 2014. Contrasting strategies of photosynthetic energy utilization drive lifestyle strategies in ecologically important picoeukaryotes. Metabolites, 4(2): 260–280.

    Article  Google Scholar 

  • Hondzo M, Lyn D. 1999. Quantified small-scale turbulence inhibits the growth of a green alga. Freshwater Biol ogy, 41(1): 51–61.

    Article  Google Scholar 

  • Hondzo M, Wüest A. 2009. Do Microscopic organisms feel turbulent flows? Environ. Sci. Technol., 43(3): 764–768.

    Article  Google Scholar 

  • Huisman J, Arrayás M, Ebert U, Sommeijer B. 2002. How do sinking phytoplankton species manage to persist? Am. Nat., 159(3): 245–254.

    Article  Google Scholar 

  • Karp-Boss L, Boss E, Jumars P A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Annu. Rev, 34: 71–107.

    Google Scholar 

  • Klausmeier C A, Litchman E, Daufresne T, Levin S A. 2008. Phytoplankton stoichiometry. Ecol. Res., 23(3): 479–485.

    Article  Google Scholar 

  • Leupold M, Hindersin S, Gust G, Kerner M, Hanelt D. 2013. Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii. J. Appl. Phycol., 25(2): 485–495.

    Article  Google Scholar 

  • Litchman E, Klausmeier C A. 2008. Trait-based community ecology of phytoplankton. Ann. Rev. Ecol. Evol. Syst., 39(1): 615–639.

    Article  Google Scholar 

  • Maxwell K, Johnson G N. 2000. Chlorophyll fluorescence—a practical guide. J. Exp. Bot., 51(345): 659–668.

    Article  Google Scholar 

  • Michels M H A, van der Goot A J, Norsker N H, Wijffels R H. 2010. Effects of shear stress on the microalgae Chaetoceros muelleri. Bioproc. Biosyst. Eng., 33(8): 921–927.

    Article  Google Scholar 

  • Montechiaro F, Giordano M. 2010. Compositional homeostasis of the dinoflagellate Protoceratium reticulatum grown at three different pCO2. J. Plant Physiol., 167(2): 110–113.

    Article  Google Scholar 

  • O’Halloran I P, Cade-Menun B J. 2008. Total and organic phosphorus. In: Carter M R, Gregorich E G eds. Soil Sampling and Methods of Analysis. 2 nd edn. CRC Press, Boca Raton.

    Google Scholar 

  • Padisák J, Köhler J, Hoeg S. 1999. Effect of changing flushing rates on development of late summer Aphanizomenon and Microcystis populations in a shallow lake, Müggelsee, Berlin, Germany. In: Tundisi J G, Straškraba M eds. Theoretical Reservoir Ecology and Its Applications. Backhuys Publishers, Leiden. p.411–424.

    Google Scholar 

  • Parkinson J A, Allen S E. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plan t Anal., 6(1): 1–11.

    Article  Google Scholar 

  • Powell N, Shilton A N, Pratt S, Chisti Y. 2008. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol., 42(16): 5958–5962.

    Article  Google Scholar 

  • Powell N, Shilton A, Chisti Y, Pratt S. 2009. Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics. Water Res., 43(17): 4207–4213.

    Article  Google Scholar 

  • Reynolds C S. 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rothschild B J, Osborn T R. 1988. Small-scale turbulence and plankton contact rates. J. Plankton Res., 10(3): 465–474.

    Article  Google Scholar 

  • Sterner R W, Elser J J. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Thomas W H, Gibson C H. 1990. Effects of small-scale turbulence on microalgae. J. Appl. Phycol., 2(1): 71–77.

    Article  Google Scholar 

  • Thomas W H, Vernet M, Gibson C H. 1995. Effects of smallscale turbulence on photosynthesis, pigmentation, cell division, and cell size in the marine dinoflagellate Gomaulax polyedra (Dinophyceae). J. Phycol., 31(1): 50–59.

    Article  Google Scholar 

  • Tripathi K, Sharma N K, Kageyama H, Takabe T, Rai A K. 2013. Physiological, biochemical and molecular responses of the halophilic cyanobacterium Aphanothece halophytica to Pi-deficiency. Eur. J. Phycol., 48(4): 461–473.

    Article  Google Scholar 

  • Warnaars T A, Hondzo M. 2006. Small-scale fluid motion mediates growth and nutrient uptake of Selenastrum capricornutum. Freshwater Biol ogy, 51(6): 999–1015.

    Article  Google Scholar 

  • Wintermans J F G M, de Mots A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis, 109(2): 448–453.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiao  (肖艳).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 51309220, 51679226), the National Key SandT Project on Water Pollution Control and Treatment (Nos. 2014ZX07104-006, 2015ZX07103-007), and the Western Action Program funded by the Chinese Academy of Sciences (No. KZCX2-XB3-14)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiao, Y., Yang, J. et al. Response of cellular stoichiometry and phosphorus storage of the cyanobacteria Aphanizomenon flos-aquae to small-scale turbulence. Chin. J. Ocean. Limnol. 35, 1409–1416 (2017). https://doi.org/10.1007/s00343-017-6178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6178-2

Keywords

Navigation