Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1511–1523 | Cite as

Involvement of two glycoside hydrolase family 19 members in colony morphotype and virulence in Flavobacterium columnare

  • Xiaolin Zhang (张晓林)
  • Nan Li (李楠)
  • Ting Qin (秦婷)
  • Bei Huang (黄贝)
  • Pin Nie (聂品)
Aquaculture and Fisheries


Flavobacterium columnare is the pathogenic agent of columnaris disease in aquaculture. Using a recently developed gene deletion strategy, two genes that encode the Glyco_hydro_19 domain (GH19 domain) containing proteins, ghd-1 and ghd-2, were deleted separately and together from the F. columnare G4 wild type strain. Surprisingly, the single-, Δghd-1 and Δghd-2, and double-gene mutants, Δghd-1 Δghd -2, all had rhizoid and non-rhizoid colony morphotypes, which we named Δghd-1, Δghd-2, Δghd-1 Δghd-2, and NΔghd-1, NΔghd-2, and NΔghd-1 Δghd-2. However, chitin utilization was not detected in either these mutants or in the wild type. Instead, skimmed milk degradation was observed for the mutants and the wild type; the non-rhizoid strain NΔghd-2 exhibited higher degradation activity as revealed by the larger transparent circle on the skimmed milk plate. Using zebrafish as the model organism, we found that non-rhizoid mutants had higher LD50 values and were less virulent because zebrafish infected with these survived longer. Transcriptome analysis between the non-rhizoid and rhizoid colony morphotypes of each mutant, i.e., NΔ ghd -1 versus (vs) Δghd-1, NΔghd-2 vs Δghd-2, and NΔghd-1 Δghd-2 vs Δghd-1 Δghd-2, revealed a large number of differentially expressed genes, among which 39 genes were common in three of the pairs compared. Although most of these genes encode hypothetical proteins, a few molecules such as phage tail protein, rhs element Vgr protein, thiol-activated cytolysin, and TonB-dependent outer membrane receptor precursor, expression of which was down-regulated in non-rhizoid mutants but up-regulated in rhizoid mutants, may play a role F. columnare virulence.


Flavobacterium columnare GH19 domain gene deletion rhizoid colony non-rhizoid colony 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

343_2017_6160_MOESM1_ESM.pdf (230 kb)
Supplementary material, approximately 229 KB.


  1. Alvarez B, Secades P, McBride M J, Guijarro J A. 2004. Development of genetic techniques for the psychrotrophic fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol., 70 (1): 581–587.CrossRefGoogle Scholar
  2. Beck B H, Li C, Farmer B D, Barnett L M, Lange M D, Peatman E. 2015. A comparison of high-and low-virulence Flavobacterium columnare strains reveals differences in iron acquisition components and responses to iron restriction. J. Fish Dis., 39 (3): 259–268.CrossRefGoogle Scholar
  3. Beier S, Bertilsson S. 2013. Bacterial chitin degradationmechanisms and ecophysiological strategies. Front. Microbiol., 4: 149, Scholar
  4. Bernardet J F. 1989. ‘Flexibacter columnaris’: first description in France and comparison with bacterial strains from other origins. Dis. Aquat. Org., 6: 37–44.CrossRefGoogle Scholar
  5. Chaudhuri S, Gantner B N, Ye R D, Cianciotto N P, Freitag N E. 2013. The Listeria monocytogenes ChiA chitinase enhances virulence through suppression of host innate immunity. mBio, 4 (2): e00617–12.CrossRefGoogle Scholar
  6. Dabo S M, Confer A W, Quijano-Blas R A. 2003. Molecular and immunological characterization of Pasteurella multocida serotype A: 3 OmpA: evidence of its role in P. multocida interaction with extracellular matrix molecules. Microb. Pathog., 35 (4): 147–157.Google Scholar
  7. Declercq A M, Haesebrouck F, van den Broeck W, Bossier P, Decostere A. 2013. Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet. Res., 44: 27.CrossRefGoogle Scholar
  8. Decostere A, Haesebrouck F, van Driessche E, Charlier G, Ducatelle R. 1999. Characterization of the adhesion of Flavobacterium columnare (Flexibacter columnaris) to gill tissue. J. Fish Dis., 22 (6): 465–474.CrossRefGoogle Scholar
  9. Dong H T, Senapin S, LaFrentz B, Rodkhum C. 2015. Virulence assay of rhizoid and non-rhizoid morphotypes of Flavobacterium columnare in red tilapia, Oreochromis sp., fry. J. Fish Dis., 39 (6): 649–655.CrossRefGoogle Scholar
  10. Duchaud E, Boussaha M, Loux V, Bernardet J F, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessières P, Gibrat J F, Claverol S, Dumetz F, Le Hénaff M, Benmansour A. 2007. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat. Biotechnol., 25 (7): 763–769.CrossRefGoogle Scholar
  11. Dumetz F, Duchaud E, Claverol S, Orieux N, Papillon S, Lapaillerie D, Le Hénaff M. 2008. Analysis of the Flavobacterium psychrophilum outer-membrane subproteome and identification of new antigenic targets for vaccine by immunomics. Microbiology, 154 (6): 1793–1801.CrossRefGoogle Scholar
  12. Edwards R A, Keller L H, Schifferli D M. 1998. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene, 207 (2): 149–157.CrossRefGoogle Scholar
  13. Fujita K, Shimomura K, Yamamoto K, Yamashita T, Suzuki K. 2006. A chitinase structurally related to the glycoside hydrolase family 48 is indispensable for the hormonally induced diapause termination in a beetle. Biochem. Biophys. Res. Commun., 345 (1): 502–507.CrossRefGoogle Scholar
  14. Gay P, Le Coq D, Steinmetz M, Ferrari E, Hoch J A. 1983. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. J. Bacteriol., 153 (3): 1424–1431.Google Scholar
  15. Gooday G W. 1990). Physiology of microbial degradation of chitin and chitosan. In: Ratledge C ed. Biochemistry of Microbial Degradation. Springer, Dordrecht, Netherlands. p.279–312.Google Scholar
  16. Hackman R H. 1962. Studies on chitin V. The action of mineral acids on chitin. Aust. J. Biol. Sci., 15 (3): 526–537.Google Scholar
  17. Hoell I A, Vaaje-Kolstad G, Eijsink V G H. 2010. Structure and function of enzymes acting on chitin and chitosan. Biotechnol. Genet. Eng. Rev., 27 (1): 331–366.CrossRefGoogle Scholar
  18. Kesari P, Patil D N, Kumar P, Tomar S, Sharma A K, Kumar P. 2015. Structural and functional evolution of chitinase-like proteins from plants. Proteomics, 15 (10): 1693–1705.CrossRefGoogle Scholar
  19. Kharade S S, McBride M J. 2014. Flavobacterium johnsoniae chitinase ChiA is required for chitin utilization and is secreted by the type IX secretion system. J. Bacteriol., 196 (5): 961–970.CrossRefGoogle Scholar
  20. Koskiniemi S, Lamoureux J G, Nikolakakis K C, t’Kint de Roodenbeke C, Kaplan M D, Low D A, Hayes C S. 2013. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. U. S. A., 110 (17): 7032–7037.CrossRefGoogle Scholar
  21. Kubota T, Miyamoto K, Yasuda M, Inamori Y, Tsujibo H. 2004. Molecular characterization of an intracellular ß-N -acetylglucosaminidase involved in the chitin degradation system of Streptomyces thermoviolaceus OPC-520. Biosci. Biotechnol. Biochem., 68 (6): 1306–1314.CrossRefGoogle Scholar
  22. Kumari S, Rath P K. 2014. Extraction and characterization of chitin and chitosan from (Labeo rohit) fish scales. Procedia Mater. Sci., 6: 482–489.CrossRefGoogle Scholar
  23. Kunttu H M T, Jokinen E I, Valtonen E T, Sundberg L R. 2011. Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J. Appl. Microbiol., 111 (6): 1319–1326.CrossRefGoogle Scholar
  24. Kunttu H M T, Suomalainen L R, Jokinen E I, Valtonen E T. 2009. Flavobacterium columnare colony types: connection to adhesion and virulence? Microb. Pathog., 46 (1): 21–27.Google Scholar
  25. Laanto E, Penttinen R K, Bamford J K H, Sundberg L R. 2014. Comparing the different morphotypes of a fish pathogen -implications for key virulence factors in Flavobacterium columnare. BMC Microbiol., 14: 170.CrossRefGoogle Scholar
  26. Li N, Qin T, Zhang X L, Huang B, Liu Z X, Xie H X, Zhang J, McBride M J, Nie P. 2015. Gene deletion strategy to examine the involvement of the two chondroitin Lyases in Flavobacterium columnare virulence. Appl. Environ. Microbiol., 81 (21): 7394–7402.CrossRefGoogle Scholar
  27. Lu Q Z, Ni D S, Ge R F. 1975. Studies on the gill diseases of the grass carp (Ctenopharyngodon idelluls). Isolation of a myxobacterial pathogen. Acta Hydrobiol. Sin., 5 (3): 315–334. (in Chinese with English abstract)Google Scholar
  28. McBride M J, Kempf M J. 1996. Development of techniques for the genetic manipulation of the gliding bacterium Cytophaga johnsonae. J. Bacteriol., 178 (3): 583–590.CrossRefGoogle Scholar
  29. McBride M J, Nakane D. 2015. Flavobacterium gliding motility and the type IX secretion system. Curr. Opin. Microbiol., 28: 72–77.CrossRefGoogle Scholar
  30. McBride M J, Zhu Y T. 2013. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J. Bacteriol., 195 (2): 270–278.CrossRefGoogle Scholar
  31. McBride M J. 2001. Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol., 55: 49–75.CrossRefGoogle Scholar
  32. Michel E, Reich K A, Favier R, Berche P, Cossart P. 1990. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol., 4 (12): 2167–2178.CrossRefGoogle Scholar
  33. Mortazavi A, Williams B A, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Meth ods., 5 (7): 621–628.CrossRefGoogle Scholar
  34. Murthy N, Bleakley B. 2012. Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. Internet. J. Microbiol., 10 (2): 14186.Google Scholar
  35. Pauer H, Cavalcanti S N V, Teixeira F L, Santos-Filho J, Vommaro R C, Oliveira A C S C, Ferreira E O, Domingues R R M C P. 2013. Inactivation of a fibronectin-binding TonB-dependent protein increases adhesion properties of Bacteroides fragilis. J. Med. Microbiol., 62 (10): 1524–1530.CrossRefGoogle Scholar
  36. Pukatzki S, Ma A T, Revel A T, Sturtevant D, Mekalanos J J. 2007. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc. Natl. Acad. Sci. U. S. A., 104 (39): 15508–15513.CrossRefGoogle Scholar
  37. Reed L J, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hyg., 27 (3): 493–497.Google Scholar
  38. Rhodes R G, Nelson S S, Pochiraju S, McBride M J. 2011. Flavobacterium johnsoniae sprB is part of an operon spanning the additional gliding motility genes sprC, sprD, and sprF. J. Bacteriol., 193 (3): 599–610.CrossRefGoogle Scholar
  39. Rinaudo M. 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31 (7): 603–632.CrossRefGoogle Scholar
  40. Shieh H S. 1980. Studies on the nutrition of a fish pathogen, Flexibacter columnaris. Microbios Lett., 13: 129–133.Google Scholar
  41. Smith S G J, Mahon V, Lambert M A, Fagan R P. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol. Lett., 273 (1): 1–11.CrossRefGoogle Scholar
  42. Staats C C, Kmetzsch L, Lubeck I, Junges A, Vainstein M H, Schrank A. 2013. Metarhizium anisopliae chitinase CHIT30 is involved in heat-shock stress and contributes to virulence against Dysdercus peruvianus. Fungal Biol., 117 (2): 137–144.CrossRefGoogle Scholar
  43. Stringer-Roth K M, Yunghans W, Caslake L F. 2002. Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J. Fish Dis., 25 (11): 687–691.CrossRefGoogle Scholar
  44. Štrojsová M, Vrba J. 2005. Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF). Mar. Freshwater Res., 56 (2): 189–195.CrossRefGoogle Scholar
  45. Suomalainen L R, Tiirola M, Valtonen E T. 2006. Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J. Fish Dis., 29 (12): 757–763.CrossRefGoogle Scholar
  46. Tekedar H C, Karsi A, Gillaspy A F, Dyer D W, Benton N R, Zaitshik J, Vamenta S, Banes M M, Gülsoy N, Aboko-Cole M, Waldbieser G C, Lawrence M L. 2012. Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J. Bacteriol., 194 (10): 2763–2764.CrossRefGoogle Scholar
  47. Vrba J, Šimek K, Pernthaler J, Psenner R. 1996. Evaluation of extracellular, high-affinity ß-N -acetylglucosaminidase measurements from freshwater lakes: an enzyme assay to estimate protistan grazing on bacteria and picocyanobacteria. Microb. Ecol., 32 (1): 81–97.CrossRefGoogle Scholar
  48. Xie H X, Nie P, Chang M X, Liu Y, Yao W J. 2005. Gene cloning and functional analysis of glycosaminoglycandegrading enzyme chondroitin AC lyase from Flavobacterium columnare G 4. Arch. Microbiol., 184 (1): 49–55.CrossRefGoogle Scholar
  49. Xie H X, Nie P, Sun B J. 2004. Characterization of two membrane-associated protease genes obtained from screening out-membrane protein genes of Flavobacterium columnare G 4. J. Fish Dis., 27 (12): 719–729.CrossRefGoogle Scholar
  50. Youderian P, Hartzell P L. 2007. Triple mutants uncover three new genes required for social motility in Myxococcus xanthus. Genetics, 177 (1): 557–566.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaolin Zhang (张晓林)
    • 1
    • 2
  • Nan Li (李楠)
    • 1
  • Ting Qin (秦婷)
    • 1
  • Bei Huang (黄贝)
    • 3
  • Pin Nie (聂品)
    • 1
  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of FisheriesJimei UniversityXiamenChina

Personalised recommendations