Skip to main content
Log in

Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southern Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950–2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8–27.3 σ θ , the ACG covers a large area from the Mindanao coast to 131°E and from 3°N to 10°N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at ∼6°N, while the northern ACG (NACG) is centered at ∼10°N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4–8 years, while the NACG has enhanced power within the 3–5-year band. A lead–lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the El Niño-Southern Oscillation. Possible causes for the ACG variability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arruda W Z, Nof D. 2003. The Mindanao and Halmahera Eddies—twin eddies induced by nonlinearities. J. Phys. Oceanogr., 33 (12): 2815–2830.

    Article  Google Scholar 

  • Chelton D B, Schlax M, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91 (2): 167–216.

    Article  Google Scholar 

  • Chen Z H, Wu L X. 2012. Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J. Geophys. Res. Oceans, 117 (C6): C06016, http://dx.doi.org/10.1029/2011JC007814.

    Article  Google Scholar 

  • Chiang T L, Qu T D. 2013. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM. J. Phys. Oceanogr., 43 (7): 1241–1253.

    Article  Google Scholar 

  • Chiang T L, Wu C R, Qu T D, Hsin Y C. 2015. Activities of 50-80 day subthermocline eddies near the Philippine coast. J. Geophys. Res. Oceans, 120 (5): 3606–3623.

    Article  Google Scholar 

  • Ducet N, Le Traon P Y, Reverdin G. 2000. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans, 105 (C8): 19477–19498.

    Article  Google Scholar 

  • Duchon C E. 1979. Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 (8): 1016–1022.

    Article  Google Scholar 

  • Fine R A, Lukas R, Bingham F M, Warner M J, Gammon R H. 1994. The western equatorial Pacific: a water mass crossroads. J. Geophys. Res. Oceans, 99 (C12): 25063–25080.

    Article  Google Scholar 

  • Firing E, Kashino Y, Hacker P. 2005. Energetic subthermocline currents observed east of Mindanao. Deep Sea Res. Part II Top. Stud. Oceanogr., 52 (3-4): 605–613.

    Article  Google Scholar 

  • Gill A E. 1982). Atmosphere-Ocean Dynamics, Vol.30. Academic Press, London.

    Google Scholar 

  • Hamlington B D, Leben R R, Nerem R S, Han W, Kim K Y. 2011. Reconstructing sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res. Oceans, 116 (C12): C12015, http://dx.doi.org/10.1029/2011jc007529.

    Article  Google Scholar 

  • Hu D X, Cui M C, Qu T D, Li Y X. 1991. A subsurface northward current offMindanao identified by dynamic calculation. Elsevier Oceanogr. Ser., 54: 359–365, http://dx.doi.org/10.1016/S0422-9894(08)70108-9.

    Article  Google Scholar 

  • Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino Y J, Wang F, Kessler W S. 2015a. Pacific western boundary currents and their roles in climate. Nature, 522 (7556): 299–308.

    Article  Google Scholar 

  • Hu S J, Hu D X, Guan C, Wang F, Zhang L L, Wang F J, Wang Q Y. 2015b. Interannual variability of the mindanao current/undercurrent in direct observations and numerical simulations. J. Phys. Oceanogr., 46 (2): 483–499.

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77 (3): 437–472.

    Article  Google Scholar 

  • Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto Y. 2013. Observed features of the Halmahera and Mindanao Eddies. J. Geophys. Res. Oceans, 118 (12): 6543–6560, http://dx.doi.org/10.1002/2013JC009207.

    Article  Google Scholar 

  • Kashino Y, España N, Syamsudin F, Richards K J, Jensen T, Dutrieux P, Ishida A. 2009. Observations of the North Equatorial Current, Mindanao Current, and the Kuroshio Current system during the 2006/07 El Niño and 2007/08 La Niña. J. Oceanogr., 65 (3): 325–333, http://dx.doi.org/10.1007/s10872-009-0030-z.

    Article  Google Scholar 

  • Kashino Y, Ishida A, Hosoda S. 2011. Observed ocean variability in the mindanao dome region. J. Phys. Oceanogr., 41 (2): 287–302, http://dx.doi.org/10.1175/2010JPO4329.1.

    Article  Google Scholar 

  • Kashino Y, Ishida A, Kuroda Y. 2005. Variability of the Mindanao current: mooring observation results. Geophys. Res. Lett., 32 (18), http://dx.doi.org/10.1029/2005GL023880.

  • Kashino Y, Ueki I, Sasaki H. 2015. Ocean variability east of Mindanao: mooring observations at 7°N, revisited. J. Geophys. Res. Oceans, 120 (4): 2540–2554.

    Article  Google Scholar 

  • Kashino Y, Watanabe H, Herunadi B, Aoyama M, Hartoyo D. 1999. Current variability at the Pacific entrance of the Indonesian throughflow. J. Geophys. Res. Oceans, 104 (C5): 11021–11035, http://dx.doi.org/10.1029/1999JC900033.

    Article  Google Scholar 

  • Li Y L, Han W Q, Wilkin J L, Zhang W G, Arango H, Zavala-Garay J, Levin J, Castruccio F S. 2014. Interannual variability of the surface summertime eastward jet in the South China Sea. J. Geophys. Res. Oceans, 119 (10): 7205–7228.

    Article  Google Scholar 

  • Li Y L, Wang F, Zhai F G. 2012. Interannual variations of subsurface spiciness in the Philippine Sea: observations and mechanism. J. Phys. Oceanogr., 42 (6): 1022–1038.

    Article  Google Scholar 

  • Li Y L, Wang F. 2012. Spreading and salinity change of North Pacific tropical water in the Philippine Sea. J. Oceanogr., 68 (3): 439–452.

    Article  Google Scholar 

  • Locarnini R A, Mishonov A V, Antonov J I, Boyer T P, Garcia H E, Baranova O K, Zweng M M, Paver C R, Reagan J R, Johnson D R, Hamilton M, Seidov D. 2013). World Ocean Atlas 2013, Volume 1: temperature. In: Levitus S ed. NOAA Atlas NESDIS 73. p.40.

    Google Scholar 

  • Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R, Gammon R. 1991. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study. J. Geophys. Res. Oceans, 96 (C4): 7089–7104.

    Article  Google Scholar 

  • Lukas R, Yamagata T, McCreary J P. 1996. Pacific low-latitude western boundary currents and the Indonesian throughflow. J. Geophys. Res. Oceans, 101 (C5): 12209–12216.

    Article  Google Scholar 

  • Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth simulator). J. Earth Sim., 1: 35–56.

    Google Scholar 

  • Nitani H. 1972). Beginning of the Kuroshio. In: Stommel H, Yoshida K eds. Kuroshio: Its Physical Aspects. University of Tokyo Press, Tokyo, Japan. p.129–163.

    Google Scholar 

  • Qiu B, Chen S M, Rudnick D L, Kashino Y. 2015. A new paradigm for the North Pacific Subthermocline lowlatitude western boundary current system. J. Phys. Oceanogr., 45 (9): 2407–2423.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current offthe Philippines. J. Phys. Oceanogr., 40 (11): 2525–2538.

    Article  Google Scholar 

  • Qiu B, Chen S M. 2012. Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42 (1): 193–206.

    Article  Google Scholar 

  • Qiu B, Joyce T M. 1992. Interannual variability in the mid-and low-latitude Western North Pacific. J. Phys. Oceanogr., 22 (9): 1062–1084.

    Article  Google Scholar 

  • Qiu B, Rudnick D L, Chen S M, Kashino Y. 2013. Quasistationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40 (10): 2183–2187, http://dx.doi.org/2110. 1002/grl.50394.

    Article  Google Scholar 

  • Qu T D, Chiang T L, Wu C R, Dutrieux P, Hu D X. 2012. Mindanao Current/Undercurrent in an eddy-resolving GCM. J. Geophys. Res. Ocean s, 117 (C6): C06026, http://dx.doi.org/10.1029/2011JC007838.

    Google Scholar 

  • Qu T D, Lindstrom E J. 2004. Northward intrusion of antarctic intermediate water in the western pacific. J. Phys. Oceanogr., 34 (9): 2104–2118.

    Article  Google Scholar 

  • Qu T D, Lukas R. 2003. The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33 (1): 5–18, http://dx.doi.org/10.1175/1520-0485(2003)033<0005:TB OTNE>2.0.CO;2.

    Article  Google Scholar 

  • Qu T D, Mitsudera H, Yamagata T. 1998. On the western boundary currents in the Philippine Sea. J. Geophys. Res. Oceans, 103 (C4): 7537–7548.

    Article  Google Scholar 

  • Qu T D, Mitsudera H, Yamagata T. 1999. A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29 (7): 1488–1505.

    Article  Google Scholar 

  • Rio M H, Guinehut S, Larnicol G. 2011. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res. Oceans, 116 (C7): C07018, http://dx.doi.org/10.1029/2010jc006505.

    Article  Google Scholar 

  • Sasaki H, Sasai Y, Kawahara S, Furuichi M, Araki F, Ishida A, Yamanaka Y, Masumoto Y, Sakuma H. 2004). A series of eddy-resolving ocean simulations in the world ocean-OFES (OGCM for the Earth Simulator) project. In: OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04. IEEE, 3: 1535–1541.

    Google Scholar 

  • Schönau M C, Rudnick D L, Cerovecki I, Gopalakrishnan G, Cornuelle B D, McClean J L, Qiu B. 2015. The Mindanao Current: mean structure and connectivity. Oceanogr aphy, 28 (4): 34–45.

    Article  Google Scholar 

  • Tomita T, Yasunari T. 1996. Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Jpn., 74 (4): 399–413.

    Article  Google Scholar 

  • Toole J M, Millard R C, Wang Z, Pu S. 1990. Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. J. Phys. Oceanogr., 20 (2): 307–320.

    Article  Google Scholar 

  • Volkov D L, Larnicol G, Dorandeu J. 2007. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. Oceans, 112 (C6): C06020, http://dx.doi. org/10.1029/2006JC003765.

    Article  Google Scholar 

  • Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Clim ate, 13 (9): 1517–1536.

    Article  Google Scholar 

  • Wang F, Hu D X. 1998. Dynamic and thermohaline properties of the Mindanao undercurrent, part I. Dynamic structure. Chin. J. Oceanol. Limnol., 16 (2): 122–127.

    Article  Google Scholar 

  • Wang F, Hu D, Bai H. 1998). Western boundary undercurrents east of the Philippines. In: He M X, Chen G eds. Proceedings of PORSEC’98-Qingdao, 28-31 July. Ocean Remote Sens. Inst., Ocean Univ. of Qingdao, Qingdao, China. p.551–556.

    Google Scholar 

  • Wang F, Song L N, Li Y L, Liu C Y, Wang J N, Lin P F, Yang G, Zhao J, Diao X Y, Zhang D X, Hu D X. 2016. Semiannually alternating exchange of intermediate waters east of the Philippines. Geophys. Res. Lett., 43 (13): 7059–7065, http://dx.doi.org/10.1002/2016GL069323.

    Article  Google Scholar 

  • Wang F, Zang N, Li Y L, Hu D X. 2015. On the subsurface countercurrents in the Philippine Sea. J. Geophys. Res. Oceans, 120 (1): 131–144.

    Article  Google Scholar 

  • Zhang L L, Hu D X, Hu S J, Wang F, Wang F J, Yuan D L. 2014. Mindanao Current/Undercurrent measured by a subsurface mooring. J. Geophys. Res. Oceans, 119 (6): 3617–3628.

    Article  Google Scholar 

  • Zhao J, Li Y L, Wang F. 2013. Dynamical responses of the west Pacific North equatorial countercurrent (NECC) system to El Niño Events. J. Geophys. Res. Oceans, 118 (6): 2828–2844, http://dx.doi.org/10.1002/jgrc.20196.

    Article  Google Scholar 

  • Zweng M M, Reagan J R, Antonov J I, Locarnini R A, Mishonov A V, Boyer T P, Garcia H E, Baranova O K, Johnson D R, Seidov D, Biddle M M. 2013). World Ocean Atlas 2013, Vol.2: salinity. In: Levitus S ed. NOAA Atlas NESDIS 74. p.39.

    Google Scholar 

Download references

Acknowledgement

We are very grateful for the insightful comments of the two anonymous reviewers that helped us improve the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Wang  (王凡).

Additional information

Supported by the National Basic Research Program of China (973 Program) (No. 2012CB417401), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA11010204), the Pioneer Hundred Talent Program of Chinese Academy of Sciences (No. Y62114101Q), the National Natural Science Foundation of China (NSFC) (Nos. 40890152, 41330963), the NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406401), the Global Change and Air-Sea Interaction (No. GASI-03-01-01-05), and the NSFC Innovative Group Grant (No. 41421005)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Li, Y., Liu, C. et al. Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent. Chin. J. Ocean. Limnol. 35, 1303–1318 (2017). https://doi.org/10.1007/s00343-017-6111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6111-8

Keywords

Navigation