Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1303–1318 | Cite as

Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent

  • Lina Song (宋丽娜)
  • Yuanlong Li (李元龙)
  • Chuanyu Liu (刘传玉)
  • Fan Wang (王凡)
Physics

Abstract

The quasi-permanent anticyclonic gyre (ACG) east of Mindanao is a dominant feature of the subthermocline circulation in the southern Philippine Sea, and it is believed closely associated with the continuous northward alongshore flow of the Mindanao Undercurrent (MUC). In this study, the structure and variability of this ACG were investigated using the 1950–2012 output of the Oceanic General Circulation Model for the Earth Simulator (OFES), which can reproduce well the structure of the climatological intermediate-layer circulation and satellite-observed sea level variations in the southern Philippine Sea. Between 26.8–27.3 σ θ , the ACG covers a large area from the Mindanao coast to 131°E and from 3°N to 10°N. Its anticyclonic flow structure is unrelated to the surface Halmahera Eddy. The eddy-resolving simulation of the OFES revealed that the ACG consists of two components. The southern ACG (SACG) is centered at ∼6°N, while the northern ACG (NACG) is centered at ∼10°N. Seasonal and interannual variations of the ACG are linked to the variations of the northward MUC transport along the Mindanao coast, and the role of the SACG is more important than the NACG. Stronger (weaker) ACGs lead to greater (smaller) MUC transport. On the interannual timescale, the SACG shows a spectrum peak at 4–8 years, while the NACG has enhanced power within the 3–5-year band. A lead–lag correlation analysis indicates that interannual variations of the ACGs and the MUC transport are partly associated with the El Niño-Southern Oscillation. Possible causes for the ACG variability are discussed.

Keywords

subthermocline circulation anticyclonic gyre Mindanao Undercurrent seasonal and interannual variability Halmahera Eddy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We are very grateful for the insightful comments of the two anonymous reviewers that helped us improve the work.

References

  1. Arruda W Z, Nof D. 2003. The Mindanao and Halmahera Eddies—twin eddies induced by nonlinearities. J. Phys. Oceanogr., 33 (12): 2815–2830.CrossRefGoogle Scholar
  2. Chelton D B, Schlax M, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91 (2): 167–216.CrossRefGoogle Scholar
  3. Chen Z H, Wu L X. 2012. Long-term change of the Pacific North Equatorial Current bifurcation in SODA. J. Geophys. Res. Oceans, 117 (C6): C06016, http://dx.doi.org/10.1029/2011JC007814.CrossRefGoogle Scholar
  4. Chiang T L, Qu T D. 2013. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM. J. Phys. Oceanogr., 43 (7): 1241–1253.CrossRefGoogle Scholar
  5. Chiang T L, Wu C R, Qu T D, Hsin Y C. 2015. Activities of 50-80 day subthermocline eddies near the Philippine coast. J. Geophys. Res. Oceans, 120 (5): 3606–3623.CrossRefGoogle Scholar
  6. Ducet N, Le Traon P Y, Reverdin G. 2000. Global highresolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. Oceans, 105 (C8): 19477–19498.CrossRefGoogle Scholar
  7. Duchon C E. 1979. Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18 (8): 1016–1022.CrossRefGoogle Scholar
  8. Fine R A, Lukas R, Bingham F M, Warner M J, Gammon R H. 1994. The western equatorial Pacific: a water mass crossroads. J. Geophys. Res. Oceans, 99 (C12): 25063–25080.CrossRefGoogle Scholar
  9. Firing E, Kashino Y, Hacker P. 2005. Energetic subthermocline currents observed east of Mindanao. Deep Sea Res. Part II Top. Stud. Oceanogr., 52 (3-4): 605–613.CrossRefGoogle Scholar
  10. Gill A E. 1982). Atmosphere-Ocean Dynamics, Vol.30. Academic Press, London.Google Scholar
  11. Hamlington B D, Leben R R, Nerem R S, Han W, Kim K Y. 2011. Reconstructing sea level using cyclostationary empirical orthogonal functions. J. Geophys. Res. Oceans, 116 (C12): C12015, http://dx.doi.org/10.1029/2011jc007529.CrossRefGoogle Scholar
  12. Hu D X, Cui M C, Qu T D, Li Y X. 1991. A subsurface northward current offMindanao identified by dynamic calculation. Elsevier Oceanogr. Ser., 54: 359–365, http://dx.doi.org/10.1016/S0422-9894(08)70108-9.CrossRefGoogle Scholar
  13. Hu D X, Wu L X, Cai W J, Gupta A S, Ganachaud A, Qiu B, Gordon A L, Lin X P, Chen Z H, Hu S J, Wang G J, Wang Q Y, Sprintall J, Qu T D, Kashino Y J, Wang F, Kessler W S. 2015a. Pacific western boundary currents and their roles in climate. Nature, 522 (7556): 299–308.CrossRefGoogle Scholar
  14. Hu S J, Hu D X, Guan C, Wang F, Zhang L L, Wang F J, Wang Q Y. 2015b. Interannual variability of the mindanao current/undercurrent in direct observations and numerical simulations. J. Phys. Oceanogr., 46 (2): 483–499.CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77 (3): 437–472.CrossRefGoogle Scholar
  16. Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto Y. 2013. Observed features of the Halmahera and Mindanao Eddies. J. Geophys. Res. Oceans, 118 (12): 6543–6560, http://dx.doi.org/10.1002/2013JC009207.CrossRefGoogle Scholar
  17. Kashino Y, España N, Syamsudin F, Richards K J, Jensen T, Dutrieux P, Ishida A. 2009. Observations of the North Equatorial Current, Mindanao Current, and the Kuroshio Current system during the 2006/07 El Niño and 2007/08 La Niña. J. Oceanogr., 65 (3): 325–333, http://dx.doi.org/10.1007/s10872-009-0030-z.CrossRefGoogle Scholar
  18. Kashino Y, Ishida A, Hosoda S. 2011. Observed ocean variability in the mindanao dome region. J. Phys. Oceanogr., 41 (2): 287–302, http://dx.doi.org/10.1175/2010JPO4329.1.CrossRefGoogle Scholar
  19. Kashino Y, Ishida A, Kuroda Y. 2005. Variability of the Mindanao current: mooring observation results. Geophys. Res. Lett., 32 (18), http://dx.doi.org/10.1029/2005GL023880.Google Scholar
  20. Kashino Y, Ueki I, Sasaki H. 2015. Ocean variability east of Mindanao: mooring observations at 7°N, revisited. J. Geophys. Res. Oceans, 120 (4): 2540–2554.CrossRefGoogle Scholar
  21. Kashino Y, Watanabe H, Herunadi B, Aoyama M, Hartoyo D. 1999. Current variability at the Pacific entrance of the Indonesian throughflow. J. Geophys. Res. Oceans, 104 (C5): 11021–11035, http://dx.doi.org/10.1029/1999JC900033.CrossRefGoogle Scholar
  22. Li Y L, Han W Q, Wilkin J L, Zhang W G, Arango H, Zavala-Garay J, Levin J, Castruccio F S. 2014. Interannual variability of the surface summertime eastward jet in the South China Sea. J. Geophys. Res. Oceans, 119 (10): 7205–7228.CrossRefGoogle Scholar
  23. Li Y L, Wang F, Zhai F G. 2012. Interannual variations of subsurface spiciness in the Philippine Sea: observations and mechanism. J. Phys. Oceanogr., 42 (6): 1022–1038.CrossRefGoogle Scholar
  24. Li Y L, Wang F. 2012. Spreading and salinity change of North Pacific tropical water in the Philippine Sea. J. Oceanogr., 68 (3): 439–452.CrossRefGoogle Scholar
  25. Locarnini R A, Mishonov A V, Antonov J I, Boyer T P, Garcia H E, Baranova O K, Zweng M M, Paver C R, Reagan J R, Johnson D R, Hamilton M, Seidov D. 2013). World Ocean Atlas 2013, Volume 1: temperature. In: Levitus S ed. NOAA Atlas NESDIS 73. p.40.Google Scholar
  26. Lukas R, Firing E, Hacker P, Richardson P L, Collins C A, Fine R, Gammon R. 1991. Observations of the Mindanao Current during the western equatorial Pacific Ocean circulation study. J. Geophys. Res. Oceans, 96 (C4): 7089–7104.CrossRefGoogle Scholar
  27. Lukas R, Yamagata T, McCreary J P. 1996. Pacific low-latitude western boundary currents and the Indonesian throughflow. J. Geophys. Res. Oceans, 101 (C5): 12209–12216.CrossRefGoogle Scholar
  28. Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean-Preliminary outcomes of OFES (OGCM for the Earth simulator). J. Earth Sim., 1: 35–56.Google Scholar
  29. Nitani H. 1972). Beginning of the Kuroshio. In: Stommel H, Yoshida K eds. Kuroshio: Its Physical Aspects. University of Tokyo Press, Tokyo, Japan. p.129–163.Google Scholar
  30. Qiu B, Chen S M, Rudnick D L, Kashino Y. 2015. A new paradigm for the North Pacific Subthermocline lowlatitude western boundary current system. J. Phys. Oceanogr., 45 (9): 2407–2423.CrossRefGoogle Scholar
  31. Qiu B, Chen S M. 2010. Interannual-to-decadal variability in the bifurcation of the North Equatorial Current offthe Philippines. J. Phys. Oceanogr., 40 (11): 2525–2538.CrossRefGoogle Scholar
  32. Qiu B, Chen S M. 2012. Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr., 42 (1): 193–206.CrossRefGoogle Scholar
  33. Qiu B, Joyce T M. 1992. Interannual variability in the mid-and low-latitude Western North Pacific. J. Phys. Oceanogr., 22 (9): 1062–1084.CrossRefGoogle Scholar
  34. Qiu B, Rudnick D L, Chen S M, Kashino Y. 2013. Quasistationary North Equatorial Undercurrent jets across the tropical North Pacific Ocean. Geophys. Res. Lett., 40 (10): 2183–2187, http://dx.doi.org/2110. 1002/grl.50394.CrossRefGoogle Scholar
  35. Qu T D, Chiang T L, Wu C R, Dutrieux P, Hu D X. 2012. Mindanao Current/Undercurrent in an eddy-resolving GCM. J. Geophys. Res. Ocean s, 117 (C6): C06026, http://dx.doi.org/10.1029/2011JC007838.Google Scholar
  36. Qu T D, Lindstrom E J. 2004. Northward intrusion of antarctic intermediate water in the western pacific. J. Phys. Oceanogr., 34 (9): 2104–2118.CrossRefGoogle Scholar
  37. Qu T D, Lukas R. 2003. The bifurcation of the North Equatorial Current in the Pacific. J. Phys. Oceanogr., 33 (1): 5–18, http://dx.doi.org/10.1175/1520-0485(2003)033<0005:TB OTNE>2.0.CO;2.CrossRefGoogle Scholar
  38. Qu T D, Mitsudera H, Yamagata T. 1998. On the western boundary currents in the Philippine Sea. J. Geophys. Res. Oceans, 103 (C4): 7537–7548.CrossRefGoogle Scholar
  39. Qu T D, Mitsudera H, Yamagata T. 1999. A climatology of the circulation and water mass distribution near the Philippine coast. J. Phys. Oceanogr., 29 (7): 1488–1505.CrossRefGoogle Scholar
  40. Rio M H, Guinehut S, Larnicol G. 2011. New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res. Oceans, 116 (C7): C07018, http://dx.doi.org/10.1029/2010jc006505.CrossRefGoogle Scholar
  41. Sasaki H, Sasai Y, Kawahara S, Furuichi M, Araki F, Ishida A, Yamanaka Y, Masumoto Y, Sakuma H. 2004). A series of eddy-resolving ocean simulations in the world ocean-OFES (OGCM for the Earth Simulator) project. In: OCEANS’04. MTTS/IEEE TECHNO-OCEAN’04. IEEE, 3: 1535–1541.Google Scholar
  42. Schönau M C, Rudnick D L, Cerovecki I, Gopalakrishnan G, Cornuelle B D, McClean J L, Qiu B. 2015. The Mindanao Current: mean structure and connectivity. Oceanogr aphy, 28 (4): 34–45.CrossRefGoogle Scholar
  43. Tomita T, Yasunari T. 1996. Role of the northeast winter monsoon on the biennial oscillation of the ENSO/monsoon system. J. Meteor. Soc. Jpn., 74 (4): 399–413.CrossRefGoogle Scholar
  44. Toole J M, Millard R C, Wang Z, Pu S. 1990. Observations of the Pacific North Equatorial Current bifurcation at the Philippine coast. J. Phys. Oceanogr., 20 (2): 307–320.CrossRefGoogle Scholar
  45. Volkov D L, Larnicol G, Dorandeu J. 2007. Improving the quality of satellite altimetry data over continental shelves. J. Geophys. Res. Oceans, 112 (C6): C06020, http://dx.doi. org/10.1029/2006JC003765.CrossRefGoogle Scholar
  46. Wang B, Wu R G, Fu X H. 2000. Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J. Clim ate, 13 (9): 1517–1536.CrossRefGoogle Scholar
  47. Wang F, Hu D X. 1998. Dynamic and thermohaline properties of the Mindanao undercurrent, part I. Dynamic structure. Chin. J. Oceanol. Limnol., 16 (2): 122–127.CrossRefGoogle Scholar
  48. Wang F, Hu D, Bai H. 1998). Western boundary undercurrents east of the Philippines. In: He M X, Chen G eds. Proceedings of PORSEC’98-Qingdao, 28-31 July. Ocean Remote Sens. Inst., Ocean Univ. of Qingdao, Qingdao, China. p.551–556.Google Scholar
  49. Wang F, Song L N, Li Y L, Liu C Y, Wang J N, Lin P F, Yang G, Zhao J, Diao X Y, Zhang D X, Hu D X. 2016. Semiannually alternating exchange of intermediate waters east of the Philippines. Geophys. Res. Lett., 43 (13): 7059–7065, http://dx.doi.org/10.1002/2016GL069323.CrossRefGoogle Scholar
  50. Wang F, Zang N, Li Y L, Hu D X. 2015. On the subsurface countercurrents in the Philippine Sea. J. Geophys. Res. Oceans, 120 (1): 131–144.CrossRefGoogle Scholar
  51. Zhang L L, Hu D X, Hu S J, Wang F, Wang F J, Yuan D L. 2014. Mindanao Current/Undercurrent measured by a subsurface mooring. J. Geophys. Res. Oceans, 119 (6): 3617–3628.CrossRefGoogle Scholar
  52. Zhao J, Li Y L, Wang F. 2013. Dynamical responses of the west Pacific North equatorial countercurrent (NECC) system to El Niño Events. J. Geophys. Res. Oceans, 118 (6): 2828–2844, http://dx.doi.org/10.1002/jgrc.20196.CrossRefGoogle Scholar
  53. Zweng M M, Reagan J R, Antonov J I, Locarnini R A, Mishonov A V, Boyer T P, Garcia H E, Baranova O K, Johnson D R, Seidov D, Biddle M M. 2013). World Ocean Atlas 2013, Vol.2: salinity. In: Levitus S ed. NOAA Atlas NESDIS 74. p.39.Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Lina Song (宋丽娜)
    • 1
    • 2
  • Yuanlong Li (李元龙)
    • 1
    • 3
  • Chuanyu Liu (刘传玉)
    • 1
    • 4
  • Fan Wang (王凡)
    • 1
    • 4
  1. 1.Key Laboratory of Ocean Circulation and Waves (KLOCAW), Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Atmospheric and Oceanic SciencesUniversity of ColoradoBoulderUSA
  4. 4.Function Laboratory for Ocean Dynamics and ClimateQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations