Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1417–1431 | Cite as

Restoration in northern Lake Gehu, a eutrophic lake in China

  • Xiaodong Wu (吴晓东)
  • Wenchao Li (李文朝)
  • Jizheng Pan (潘继征)
  • Shuzhan Ma (马书占)
  • Bingfa Chen (陈丙法)
  • Shangwei He (何尚卫)


Lake Gehu is a severely eutrophic lake in southeast China. A series of restoration measures have been implemented since 2009 in northern Lake Gehu. This study compared aquatic plants, water quality, sediment, and phytoplankton between restoration and control areas to investigate the effect of restoration measures. The results demonstrated that aquatic macrophyte coverage increased from 0% to 10.6%; mean TP, TN, and CODMn concentrations increased by 50.0%, 42.4%, and 40.8%, respectively, compared with those before the measures were carried out; the mean Secchi depth (SD) increased to 42.5 cm, which is 1.4 times higher than that before restoration; the mean euphotic depth (Zeu) in the summer increased from 91 to 130 cm; the mean chl a concentration decreased from 34.8 to 20.2 μg/L, compared with that before restoration; the Shannon-Wiener index of phytoplankton increased by 28.7%. The mean TP and TN concentrations in sediments decreased by 63.8% and 52.4%, respectively, compared with that before dredging. These results indicate that the restoration in northern Lake Gehu was effective. To complete the transformation from an algae- to a macrophyte-stable state within the region, further measures must be adopted. This restoration of a eutrophic lake can serve as a reference for similar eutrophic lakes.


Lake Gehu eutrophication local areas restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank FAN Fan, GAO Ya and WANG Qing for their assistance in sampling.


  1. American Public Health Association. 1980. Standard Methods for the Examination of Water and Wastewater. 15 th edn. APHA, Washington, DC. 642p.Google Scholar
  2. Andersen F Ø, Lastein E. 1981. Sedimentation of resuspension in shallow eutrophic Lake Arreskov, Denmark. Verh. Int. Ver. Limnol., 21: 425–430.Google Scholar
  3. Bachmann R W, Hoyer M V, Canfield D E. 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia, 394: 219–232.CrossRefGoogle Scholar
  4. Beaver J R, Casamatta D A, East T L, Havens K E, Rodusky A J, James R T, Tausz C E, Buccier K M. 2013. Extreme weather events influence the phytoplankton community structure in a large lowland subtropical lake (Lake Okeechobee, Florida, USA). Hydrobiologia, 709(1): 213–226.CrossRefGoogle Scholar
  5. Bornette G, Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat. Sci., 73(1): 1–14.CrossRefGoogle Scholar
  6. Chen F Z, Shu T T, Jeppesen E, Liu Z W, Chen Y W. 2013. Restoration of a subtropical eutrophic shallow lake in China: effects on nutrient concentrations and biological communities. Hydrobiologia, 718(1): 59–71.CrossRefGoogle Scholar
  7. Chen K N, Bao C H, Zhou W P. 2009. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecol. Eng., 35(11): 1646–1655.CrossRefGoogle Scholar
  8. Chen S L, Liu X F, Hua L. 1991. The role of silver carp and bighead in the cycling of nitrogen and phosphorus in the East Lake ecosystem. Acta Hydrobiol. Sin., 15(1): 8–26. (in Chinese with English abstract)Google Scholar
  9. Cooke G D, Welch E B, Peterson S A, Newroth P R. 1993. Restoration and Management of Lakes and Reservoirs. 2 nd edn. Lewis Publishers, Boca Raton, FL.Google Scholar
  10. Cooke G D, Welch E B, Peterson S, Nichols S A. 2005. Restoration and Management of Lakes and Reservoirs. 3 rd edn. CRC Press, Boca Raton. 529p.Google Scholar
  11. Dennison W C, Orth R J, Moore K A, Stevenson J C, Carter V, Kollar S, Bergstrom P W, Batiuk R A. 1993. Assessing water quality with submersed aquatic vegetation. BioScience, 43(2): 86–94.CrossRefGoogle Scholar
  12. Dokulil M T, Donabaum K, Pall K. 2011. Successful restoration of a shallow lake: a case study based on bistable theory. In: Ansari A A, Gill S S, Lanza G R, Rast W eds. Eutrophication: Causes, Consequences and Control. Springer, Netherland. p.285–294.Google Scholar
  13. Dong B L, Qin B Q, Gao G, Cai X L. 2014. Submerged macrophyte communities and the controlling factors in large, shallow Lake Taihu (China): sediment distribution and water depth. J. Great Lakes Res., 40(3): 646–655.CrossRefGoogle Scholar
  14. Drenner R W, Hambright K D. 1999. Biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie, 146(2): 129–165.CrossRefGoogle Scholar
  15. Ekholm P, Malve O, Kirkkala T. 1997. Internal and external loading as regulators of nutrient concentrations in the agriculturally loaded Lake Pyhäjärvi (southwest Finland). Hydrobiologia, 345(1): 3–14.CrossRefGoogle Scholar
  16. Gulati R D, Pires L M D, Van Donk E. 2008. Lake restoration studies: failures, bottlenecks and prospects of new ecotechnological measures. Limnologica, 38(3-4): 233–247.CrossRefGoogle Scholar
  17. Hansson L A, Annadotter H, Bergman E, Hamrin S F, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson P Å, Søndergaard M, Strand J. 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1(6): 558–574.CrossRefGoogle Scholar
  18. Havens K E, Jin K R, Rodusky A J, Sharfstein B, Brady M A, East T L, Iricanin N, Thomas James R, Harwell M C, Steinman A D. 2001. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. Sci. World J., 1: 44–70.CrossRefGoogle Scholar
  19. Hu H J, Wei Y X. 2006. The Freshwater Algae of China: Systematics, Taxonomy and Ecology. Science Press, Beijing, China. p.23–903. (in Chinese)Google Scholar
  20. Jackson H O, Starrett W C. 1959. Turbidity and sedimentation at Lake Chautauqua, Illinois. The J ournal of Wildl ife Manage ment, 23(2): 157–168.CrossRefGoogle Scholar
  21. James R T, Chimney M J, Sharfstein B, Engstrom D R, Schottler S P, East T, Jin K R. 2008. Hurricane effects on a shallow lake ecosystem, Lake Okeechobee, Florida (USA). Fund. Appl. Limnol., 172(4): 273–287.CrossRefGoogle Scholar
  22. James R T, Havens K E. 2005. Outcomes of extreme water levels on water quality of offshore and nearshore regions in a large shallow subtropical lake. Arch. Hydrobiol., 163(2): 225–239.CrossRefGoogle Scholar
  23. James R T, Pollman C D. 2011. Sediment and nutrient management solutions to improve the water quality of Lake Okeechobee. Lake and Reservoir Management, 27(1): 28–40.CrossRefGoogle Scholar
  24. James W F, Barko J W. 1994. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake and Reservoir Management, 10(2): 95–102.CrossRefGoogle Scholar
  25. Jeffrey S W, Humphrey G F. 1975. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz., 167(2): 191–194.CrossRefGoogle Scholar
  26. Jeppesen E, Søndergaard M, Jensen J P, Havens K E, Anneville O, Carvalho L, Coveney M F, Deneke R, Dokulil M T, Foy B, Gerdeaux D, Hampton S E, Hilt S, Kangur K, Köhler J, Lammens E H H R, Lauridsen T L, Manca M, Miracle R, Moss B, Nõges P, Persson G, Phillips G, Portielje R, Romo S, Schelske C L, Straile D, Tatrai I, Willén E, Winder M. 2005. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshwater Biol., 50(10): 1747–1771.CrossRefGoogle Scholar
  27. Jeppesen E, Søndergaard M, Lauridsen T L, Davidson T A, Liu Z W, Mazzeo N, Trochine C, Özkan K, Jensen H S, Trolle D, Starling F, Lazzaro X, Johansson L S, Bjerring R, Liboriussen L, Larsen S E, Landkildehus F, Egemose S, Meerhoff M. 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Adv. Ecol. Res., 47: 411–487.CrossRefGoogle Scholar
  28. Jeppesen E, Søndergaard M, Søndergaard M, Christoffersen K. 1998. The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York. 425p.CrossRefGoogle Scholar
  29. Jin K R, Chang N B, Ji Z G, James R T. 2011. Hurricanes affect the sediment and environment in lake Okeechobee. Crit. Rev. Env iron. Sci. Tec hnol., 41 (S1): 382–394.CrossRefGoogle Scholar
  30. Ke Z X, Xie P, Guo L G, Liu Y Q, Yang H. 2007. In situ study on the control of toxic Microcystis blooms using phytoplanktivorous fish in the subtropical Lake Taihu of China: a large fish pen experiment. Aquaculture, 265(1-4): 127–138.CrossRefGoogle Scholar
  31. Keith D J, Yoder J A, Freeman S A. 2002. Spatial and temporal distribution of coloured dissolved organic matter (CDOM) in Narragansett Bay, Rhode Island: implications for phytoplankton in coastal waters. Estuarine, Coastal and Shelf Science, 55(5): 705–717.CrossRefGoogle Scholar
  32. Kristensen P, Søndergaard M, Jeppesen E. 1992. Resuspension in a shallow eutrophic lake. Hydrobiologia, 228(1): 101–109.CrossRefGoogle Scholar
  33. Lin S Y, Zou T, Gao H W, Guo X Y. 2009. The vertical attenuation of irradiance as a function of turbidity: a case of the Huanghai (Yellow) Sea in spring. Acta Oceanol. Sin., 28(5): 66–75.Google Scholar
  34. Liu J K, Xie P. 1999. Unraveling the enigma of the disappearance of water bloom from the East lake (Lake Donghu) of Wuhan. Resour. Environ. Yangtze Basin, 8(3): 312–319. (in Chinese with English abstract)Google Scholar
  35. Liu Q Z, Chen M K, Tong H Y, He G X, Hong R H, Chen L S, Chen L Q. 2004. Study on the possible cause of water blooming and the bloom-prevention technology in Lake Qiandaohu. Agric. Sci. China, 3(8): 627–633.Google Scholar
  36. Lowe E F, Battoe L E, Coveney M F, Schelske C L, Havens K E, Marzolf E R, Reddy K R. 2001. The restoration of Lake Apopka in relation to alternative stable states: an alternative view to that of Bachmann et al. (1999). Hydrobiologia, 448 (1-3): 11–18.CrossRefGoogle Scholar
  37. Moss B, Balls H, Irvine K, Stansfied J. 1986. Restoration of two lowland lakes by isolation from nutrient-rich water sources with and without removal of sediment. J. Appl. Ecol., 23(2): 391–414.CrossRefGoogle Scholar
  38. Phillips G, Jackson R., Bennet C, Chilvers A. 1994. The importance of sediment phosphorus release in the restoration of very shallow lakes (The Norfolk Broads, England) and implications for biomanipulation. Hydrobiologia, 275/276, 445–456.CrossRefGoogle Scholar
  39. Phillips G, Kelly A, Pitt J A, Sanderson R, Taylor E. 2005. The recovery of a very shallow eutrophic lake, 20 years after the control of effluent derived phosphorus. Freshwater Biol., 50(10): 1628–1638.CrossRefGoogle Scholar
  40. Pu P M. 1993. An experimental study on the physio-ecological engineering for improving Taihu Lake water quality in water source area of Mashan Drinking Waterplant. J. Lake Sci., 5(2): 171–180. (in Chinese with English abstract)CrossRefGoogle Scholar
  41. Qin B Q, Gao G, Zhu G W, Zhang Y L, Song Y Z, Tang X M, Xu H, Deng J M. 2013. Lake eutrophication and its ecosystem response. Chin. Sci. Bull., 58(9): 961–970.CrossRefGoogle Scholar
  42. Qin B Q, Xu H, Dong B L. 2011. The Principle and Practice of Eutrophic Lake Restoration and Management. Higher Education Press, Beijing, China. p.281–282. (in Chinese)Google Scholar
  43. Qin B Q, Zhang Y L, Gao G, Zhu G W, Gong Z J, Dong B L. 2014. Key factors affecting lake ecological restoration. Progress in Geography, 33(7): 918–924. (in Chinese with English abstract)Google Scholar
  44. Qin B Q. 2002. Approaches to mechanisms and control of eutrophication of shallow lakes in the middle and lower reaches of the Yangze River. J. Lake Sci., 14(3): 193–202. (in Chinese with English abstract)CrossRefGoogle Scholar
  45. Radke R J, Kahl U. 2002. Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto-and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshwat er Biol., 47(12): 2337–2344.CrossRefGoogle Scholar
  46. Sas H. 1989. Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, Sankt Augustin. 497p.Google Scholar
  47. Scheffer M, Carpenter S, Foley J A, Folke C, Walker B. 2001. Catastrophic shifts in ecosystems. Nature, 413(6856): 591–596.CrossRefGoogle Scholar
  48. Scheffer M, Hosper S H, Meijer M L, Moss B, Jeppesen E. 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8(8): 275–279.CrossRefGoogle Scholar
  49. Scheffer M, Jeppesen E. 1998. Alternative stable states. In: Jeppesen E, Søndergaard M, Søndergaard, M, Christoffersen K eds. The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, New York. p.397–407.CrossRefGoogle Scholar
  50. Scheffer M. 1998. Ecology of Shallow Lakes. Chapman & Hall, London. 375p.Google Scholar
  51. Søndergaard M, Liboriussen L, Pedersen A R, Jeppesen E. 2008. Lake restoration by fish removal: short-and longterm effects in 36 Danish lakes. Ecosystems, 11(8): 1291–1305.CrossRefGoogle Scholar
  52. Starling F L D R M. 1993. Control of eutrophication by silver carp(Hypophthalmich thys molitrix) in the tropical Paranoá Reservoir (Brasília, Brazil): a mesocosm experiment. Hydrobiologia, 257(3): 143–152.CrossRefGoogle Scholar
  53. State Environmental Protection Administration. 2002. Water and Exhausted Water Monitoring Analysis Method. 4 th edn. China Environmental Science Press, Beijing, China. p.216-219. (in Chinese)Google Scholar
  54. Van Zuidam B G, Peeters E T H M. 2015. Wave forces limit the establishment of submerged macrophytes in large shallow lakes. Limnol. Oceanogr., 60(5): 1536–1549.CrossRefGoogle Scholar
  55. Xie P, Liu J K. 2001. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. Sci. World J., 1: 337–356.CrossRefGoogle Scholar
  56. Xie P. 2003. Silver Carp and Bighead, and Their Use in the Control of Algal Blooms. Science Press, Beijing, China. 134p. (in Chinese)Google Scholar
  57. Xu L G, Pan J Z, Jiang J H, Zhao H B, Liu C H. 2013. A history evaluation modelling and forecastation of water quality in shallow lake. Water Environ. J., 27(4): 514–523.CrossRefGoogle Scholar
  58. Yang J K, Xiao B, Liu N F, Li J J, He G L. 2005. Forecasting the influence of south-to-north project on water quality in Xiangfan section by using WASP6. China Water & Wastewater, 21(9): 103–104. (in Chinese with English abstract)Google Scholar
  59. Yu X F, Hu J Q, Mao C Z, Liao D, Jia H B, Shao X Y. 2008. Comparison of optical characters of Hangzhou west lake in winter and spring. Res. Environ. Sci., 21(4): 119–125. (in Chinese with English abstract)Google Scholar
  60. Zhang Y L, Qin B Q, Chen W M, Hu W P, Gao G, Zhu G W, Luo L C. 2005. Attenuation of photosynthetically available radiation (PAR) in Meiliang Bay under different winds and waves. Chin. J. Appl. Ecol., 16(6): 1133–1137. (in Chinese with English abstract)Google Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xiaodong Wu (吴晓东)
    • 1
    • 2
  • Wenchao Li (李文朝)
    • 1
  • Jizheng Pan (潘继征)
    • 1
  • Shuzhan Ma (马书占)
    • 3
  • Bingfa Chen (陈丙法)
    • 3
  • Shangwei He (何尚卫)
    • 4
  1. 1.Nanjing Institute of Geography and LimnologyChinese Academy of Sciences / State Key Laboratory of Lake Science and EnvironmentNanjingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Environmental Science and EngineeringSuzhou University of Science and TechnologySuzhouChina
  4. 4.Yancheng Academy of Environmental Protection Technology and EngineeringNanjing UniversityYanchengChina

Personalised recommendations