Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1454–1464 | Cite as

Structure-based function prediction of the expanding mollusk tyrosinase family

  • Ronglian Huang (黄荣莲)
  • Li Li (李莉)
  • Guofan Zhang (张国范)
Biology
  • 54 Downloads

Abstract

Tyrosinase (Ty) is a common enzyme found in many different animal groups. In our previous study, genome sequencing revealed that the Ty family is expanded in the Pacific oyster (Crassostrea gigas). Here, we examine the larger number of Ty family members in the Pacific oyster by high-level structure prediction to obtain more information about their function and evolution, especially the unknown role in biomineralization. We verified 12 Ty gene sequences from Crassostrea gigas genome and Pinctada fucata martensii transcriptome. By using phylogenetic analysis of these Tys with functionally known Tys from other molluscan species, eight subgroups were identified (CgTy_s1, CgTy_s2, MolTy_s1, MolTy-s2, MolTy-s3, PinTy-s1, PinTy-s2 and PviTy). Structural data and surface pockets of the dinuclear copper center in the eight subgroups of molluscan Ty were obtained using the latest versions of prediction online servers. Structural comparison with other Ty proteins from the protein databank revealed functionally important residues (HA1, HA2, HA3, HB1, HB2, HB3, Z1–Z9) and their location within these protein structures. The structural and chemical features of these pockets which may related to the substrate binding showed considerable variability among mollusks, which undoubtedly defines Ty substrate binding. Finally, we discuss the potential driving forces of Ty family evolution in mollusks. Based on these observations, we conclude that the Ty family has rapidly evolved as a consequence of substrate adaptation in mollusks.

Keywords

tyrosinase mollusk ligand binding pocket substrate diversity evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

We thank ZHE Zheng for her assistance at the facility.

Supplementary material

343_2017_6066_MOESM1_ESM.jpg (2.8 mb)
Supplementary material, approximately 2.8 MB.
343_2017_6066_MOESM2_ESM.jpg (773 kb)
Supplementary material, approximately 791 KB.
343_2017_6066_MOESM3_ESM.jpg (1.3 mb)
Supplementary material, approximately 1.3 MB.
343_2017_6066_MOESM4_ESM.docx (18 kb)
Tab.1s Templates and ab initio information of homology modeling

References

  1. Aguilera F, McDougall C, Degnan B M. 2013. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evolutionary Biology, 13(1): 1–12.CrossRefGoogle Scholar
  2. Aguilera F, McDougall C, Degnan B M. 2014. Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomaterialia, 10(9): 3855–3865.CrossRefGoogle Scholar
  3. Andersen S O. 2010. Insect cuticular sclerotization: a review. Insect Biochemistry and Molecular Biology, 40(3): 166–178.CrossRefGoogle Scholar
  4. Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISSMODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2): 195–201.CrossRefGoogle Scholar
  5. Baker D, Sali A. 2001. Protein structure prediction and structural genomics. Science, 294(5540): 93–96.CrossRefGoogle Scholar
  6. Breslauer D N, Kaplan D L. 2012. Silks: properties and uses of natural and designed variants. Biopolymers, 97(6): 319–321.CrossRefGoogle Scholar
  7. Cuff M E, Miller K I, van Holde K E, Hendrickson W A. 1998. Crystal structure of a functional unit from Octopus hemocyanin. Journal of Molecular Biology, 278(4): 855–870.CrossRefGoogle Scholar
  8. Decker H, Schweikardt T, Tuczek F. 2006. The first crystal structure of tyrosinase: all questions answered. Angewandte Chemie International Edition, 45(28): 4546–4550.CrossRefGoogle Scholar
  9. Decker H, Tuczek F. 2000. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends in Biochemical Sciences, 25(8): 392–397.CrossRefGoogle Scholar
  10. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Research, 34 (S2): W116–W118.CrossRefGoogle Scholar
  11. Freddi G, Anghileri A, Sampaio S, Buchert J, Monti P, Taddei P. 2006. Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: grafting of chitosan under heterogeneous reaction conditions. Journal of Biotechnology, 125(2): 281–294.CrossRefGoogle Scholar
  12. Fujieda N, Ikeda T, Murata M, Yanagisawa S, Aono S, Ohkubo K, Nagao S, Ogura T, Hirota S, Fukuzumi S, Nakamura Y, Hata Y, Itoh S. 2011. Post-translational His-Cys crosslinkage formation in tyrosinase induced by copper(II)-peroxo species. Journal of the American Chemical Society, 133(5): 1180–1183.CrossRefGoogle Scholar
  13. Gherardini P F, Helmer-Citterich M. 2008. Structure-based function prediction: approaches and applications. Briefings in Functional Genomics and Proteomics, 7(4): 291–302.CrossRefGoogle Scholar
  14. Gillespie J P, Kanost M R, Trenczek T. 1997. Biological mediators of insect immunity. Annual Review of Entomology, 42(1): 611–643.CrossRefGoogle Scholar
  15. Goldfeder M, Kanteev M, Adir N, Fishman A. 2013. Influencing the monophenolase/diphenolase activity ratio in tyrosinase. Biochimica et Biophysica Acta, 1834(3): 629–633.CrossRefGoogle Scholar
  16. Guerette P A, Hoon S, Seow Y, Raida M, Masic A, Wong F T, Ho V H B, Kong K W, Demirel M C, Pena-Francesch A, Amini S, Tay G Z, Ding D W, Miserez A. 2013. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science. Nature Biotechnology, 31(10): 908–915.CrossRefGoogle Scholar
  17. Hinman M B, Lewis R V. 1992. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. The Journal of Biological Chemistry, 267(27): 19320–19324.Google Scholar
  18. Holm L, Sander C. 1995. Dali: a network tool for protein structure comparison. Trends in Biochemical Sciences, 20(11): 478–480.CrossRefGoogle Scholar
  19. Hooft R W W, Sander C, Vriend G. 1997. Objectively judging the quality of a protein structure from a Ramachandran plot. Computer Applications in the Biosciences, 13(4): 425–430.Google Scholar
  20. Hooft R W W, Vriend G, Sander C, Abola E E. 1996. Errors in protein structures. Nature, 381(6580): 272.CrossRefGoogle Scholar
  21. Källberg M, Wang H P, Wang S, Peng J, Wang Z Y, Lu H, Xu J B. 2012. Template-based protein structure modeling using the RaptorX web server. Nature Protocols, 7(8): 1511–1522.CrossRefGoogle Scholar
  22. Kamaraj B, Purohit R. 2013a. Mutational analysis of TYR gene and its structural consequences in OCA1A. Gene, 513(1): 184–195.CrossRefGoogle Scholar
  23. Kamaraj B, Purohit R. 2013b. In silico screening and molecular dynamics simulation of disease-associated nsSNP in TYRP1 gene and its structural consequences in OCA3. BioMed Research International, 2013: 697051.CrossRefGoogle Scholar
  24. Kamaraj B, Purohit R. 2014a. Computational screening of disease-associated mutations in OCA2 gene. Cell Biochemistry and Biophysics, 68(1): 97–109.CrossRefGoogle Scholar
  25. Kamaraj B, Purohit R. 2014b. Mutational analysis of oculocutaneous albinism: a compact review. BioMed Research International, 2014: 905472.Google Scholar
  26. Kamaraj B, Purohit R. 2016. Mutational analysis on membrane associated transporter protein (MATP) and their structural consequences in oculocutaeous albinism type 4 (OCA4)-a molecular dynamics approach. Journal of Cellular Biochemistry, 117(11): 2608–2619.CrossRefGoogle Scholar
  27. Kanteev M, Goldfeder M, Chojnacki M, Adir N, Fishman A. 2013. The mechanism of copper uptake by tyrosinase from Bacillus megaterium. JBIC Journal of Biological Inorganic Chemistry, 18(8): 895–903.CrossRefGoogle Scholar
  28. Kelley L A, Mezulis S, Yates C M, Wass M N, Sternberg M J E. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat ure Protocols, 10(6): 845–858.CrossRefGoogle Scholar
  29. Kelley L A, Sternberg M J. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nature Protocols, 4(3): 363–371.CrossRefGoogle Scholar
  30. Klabunde T, Eicken C, Sacchettini J C, Krebs B. 1998. Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural Biology, 5(12): 1084–1090.CrossRefGoogle Scholar
  31. Lai-Fook J. 1966. The repair of wounds in the integument of insects. Journal of Insect Physiology, 12(2): 195–226.CrossRefGoogle Scholar
  32. Laskowski R A, MacArthur M W, Moss D S, Thornton J M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2): 283–291.CrossRefGoogle Scholar
  33. Lobley A, Sadowski M I, Jones D T. 2009. pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25(14): 1761–1767.CrossRefGoogle Scholar
  34. Lovell S C, Davis I W, Arendall III W B, de Bakker P I W, Word J M, Prisant M G, Richardson J S, Richardson D C. 2003. Structure validation by Ca geometry: and Cß deviation. Proteins, 50(3): 437–450.CrossRefGoogle Scholar
  35. Luna-Acosta A, Saulnier D, Pommier M, Haffner P, de Decker S, Renault T, Thomas-Guyon H. 2011. First evidence of a potential antibacterial activity involving a laccase-type enzyme of the phenoloxidase system in Pacific oyster Crassostrea gigas haemocytes. Fish & Shellfish Immunology, 31(6): 795–800.CrossRefGoogle Scholar
  36. Mann K, Edsinger-Gonzales E, Mann M. 2012. In-depth proteomic analysis of a mollusc shell: acid-soluble and acid-insoluble matrix of the limpet Lottia gigantea. Proteome Science, 10(1): 28.CrossRefGoogle Scholar
  37. Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, Cochennec-Laureau N, Marin F, Gueguen Y, Montagnani C. 2012. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proceedings of the National Academy of Sciences of the United States of America, 109(51): 20986–20991.CrossRefGoogle Scholar
  38. Mason T J, Matthews M. 2012. Aquatic environment, housing, and management in the eighth edition of the Guide for the Care and Use of Laboratory Animals: additional considerations and recommendations. Journal of the American Association for Laboratory Animal Science, 51(3): 329–332.Google Scholar
  39. Masuda T, Momoji K, Hirata T, Mikami B. 2014. The crystal structure of a crustacean prophenoloxidase provides a clue to understanding the functionality of the type 3 copper proteins. The FEBS Journal, 281(11): 2659–2673.CrossRefGoogle Scholar
  40. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. 2006. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. The Journal of Biological Chemistry, 281(13): 8981–8990.CrossRefGoogle Scholar
  41. McDougall C, Aguilera F, Degnan B M. 2013. Rapid evolution of pearl oyster shell matrix proteins with repetitive, lowcomplexity domains. Journal of the Royal Society Interface, 10(82): 20130041.CrossRefGoogle Scholar
  42. Nagai K, Yano M, Morimoto K, Miyamoto H. 2007. Tyrosinase localization in mollusc shells. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146(2): 207–214.CrossRefGoogle Scholar
  43. Naraoka T, Uchisawa H, Mori H, Matsue H, Chiba S, Kimura A. 2003. Purification, Characterization and molecular cloning of tyrosinase from the cephalopod mollusk, Illex argentinus. European Journal of Biochemistry, 270(19): 4026–4038.CrossRefGoogle Scholar
  44. Partlow B P, Hanna C W, Rnjak-Kovacina J, Moreau J E, Applegate M B, Burke K A, Marelli B, Mitropoulos A N, Omenetto F G, Kaplan D L. 2014. Highly tunable elastomeric silk biomaterials. Advanced Functional Materials, 24(29): 4615–4624.CrossRefGoogle Scholar
  45. Perbandt M, Guthöhrlein E W, Rypniewski W, Idakieva K, Stoeva S, Voelter W, Genov N, Betzel C. 2003. The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry, 42(21): 6341–6346.CrossRefGoogle Scholar
  46. Pho L N, Leachman S A. 2010. Genetics of pigmentation and melanoma predisposition. Giornale italiano di Dermatologia e Venereologia, 145(1): 37–45.Google Scholar
  47. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, Di Maio F, Lange O, Kinch L, Sheffler W, Kim B H, Das R, Grishin N V, Baker D. 2009. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins, 77 (S9): 89–99.CrossRefGoogle Scholar
  48. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols, 5(4): 725–738.CrossRefGoogle Scholar
  49. Samata T, Hayashi N, Kono M, Hasegawa K, Horita C, Akera S. 1999. A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Letters, 462(1-2): 225–229.CrossRefGoogle Scholar
  50. Sendovski M, Kanteev M, Ben-Yosef V S, Adir N, Fishman A. 2011. First structures of an active bacterial tyrosinase reveal copper plasticity. Journal of Molecular Biology, 405(1): 227–237.CrossRefGoogle Scholar
  51. Shen X, Belcher A M, Hansma P K, Stucky G D, Morse D E. 1997. Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem,. 272(51): 32472–32481.CrossRefGoogle Scholar
  52. Shuster Ben-Yosef V, Sendovski M, Fishman A. 2010. Directed evolution of tyrosinase for enhanced monophenolase/ diphenolase activity ratio. Enzyme and Microbial Technology, 47(7): 372–376.CrossRefGoogle Scholar
  53. Slominski A, Tobin D J, Shibahara S, Wortsman J. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiological Reviews, 84(4): 1155–1228.CrossRefGoogle Scholar
  54. Smith B L, Schäffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature, 399(6738): 761–763.CrossRefGoogle Scholar
  55. Söding J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7): 951–960.CrossRefGoogle Scholar
  56. Solomon E I, Heppner D E, Johnston E M, Ginsbach J W, Cirera J, Qayyum M, Kieber-Emmons M T, Kjaergaard C H, Hadt R G, Tian L. 2014. Copper active sites in biology. Chemical Reviews, 114(7): 3659–3853.CrossRefGoogle Scholar
  57. Suhre M H, Gertz M, Steegborn C, Scheibel T. 2014. Structural and functional features of a collagen-binding matrix protein from the mussel byssus. Nature Communications, 5(5): 3392–3392.Google Scholar
  58. Takgi R, Miyashita T. 2013. A cDNA cloning of a novel alphaclass tyrosinase of Pinctada fucata: its expression analysis and characterization of the expressed protein. Enzyme Research, 2014(2): 780549–780549.Google Scholar
  59. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12): 2725–2729.CrossRefGoogle Scholar
  60. True J R. 2003. Insect melanism: the molecules matter. Trends in Ecology & Evolution, 18(12): 640–647.CrossRefGoogle Scholar
  61. Yan F, Luo S J, Jiao Y, Deng Y W, Du X D, Huang R L, Wang Q H, Chen W Y. 2014. Molecular characterization of the BMP7 gene and its potential role in shell formation in Pinctada martensii. International Journal of Molecular Sciences, 15(11): 21215–21228.CrossRefGoogle Scholar
  62. Yano M, Nagai K, Morimoto K, Miyamoto H. 2006. Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comparative Biochemistry and Physiology Part B: Biochemistry an d Molecular Biology, 144(2): 254–262.CrossRefGoogle Scholar
  63. Yu J, Wei W, Danner E, Ashley R K, Israelachvili J N, Waite J H. 2011. Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology, 7(9): 588–590.CrossRefGoogle Scholar
  64. Zhang C, Xie L P, Huang J, Chen L, Zhang R Q. 2006. A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochemical and Biophysical Research Communications, 342(2): 632–639.CrossRefGoogle Scholar
  65. Zhang G F, Fang X D, Guo X M et al. 2012. The oyster genome reveals stress adaptation and complexity of shell formation. Nature, 490(7418): 49–54.CrossRefGoogle Scholar
  66. Zhao X X, Wang Q H, Jiao Y, Huang R L, Deng Y W, Wang H, Du X D. 2012. Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of Pearl Sac in Pearl Oyster Pinctada martensii. Marine Biotechnology, 14(6): 730–739.CrossRefGoogle Scholar
  67. Zhou Z, Ni D J, Wang M Q, Wang L L, Shi X W, Yue F, Liu R, Song L S. 2012. The phenoloxidase activity and antibacterial function of a tyrosinase from scallop Chlamys farreri. Fish & Shellfish Immunology, 33(2): 375–381.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ronglian Huang (黄荣莲)
    • 1
    • 2
    • 4
  • Li Li (李莉)
    • 1
    • 3
  • Guofan Zhang (张国范)
    • 1
    • 3
  1. 1.Key Laboratory of Experimental Marine Biology, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.Marine Pearl Culture Lab, Fishery CollegeGuangDong Ocean UniversityZhanjiangChina

Personalised recommendations