Skip to main content
Log in

Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China

  • Ecology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Diatoms and dinoflagellates are two major groups of phytoplankton that flourish in the oceans, particularly in coastal zone and upwelling systems, and their contrasting production have been reported in several world seas. However, this information is not available in the coastal East China Sea (ECS). Thus, to investigate and compare the decadal trends in diatoms and dinoflagellates, a sediment core, 47 cm long, was collected from the coastal zone of the ECS. Sediment chlorophyll-a (Chl-a), phytoplankton-group specific pigment signatures of diatoms and dinoflagellates, and diatom valve concentrations were determined. The sediment core covered the period from 1961 to 2011 AD. The chlorophyll-a contents ranged from 2.32 to 73 µg/g dry sediment (dw) and averaged 9.81 µg/g dw. Diatom absolute abundance ranged from 29152 to 177501 valve/gram (v/g) dw and averaged 72137 v/g dw. Diatom valve and diatom specific pigment marker concentrations were not significantly correlated. Peridinin increased after the 1980s in line with intensified use of fertilizer and related increases in nutrient inputs into the marine environment. The increased occurrence of dinoflagellate dominance after the 1980s can be mostly explained by the increase in nutrients. However, the contribution of dinoflagellates to total phytoplankton production (Chl-a) decreased during the final decade of this study, probably because of the overwhelming increase in diatom production that corresponded with the construction of the Three Gorges Dam (TGD) and related light availability. Similarly, the mean ratio of fucoxanthin/peridinin for the period from 1982 to 2001 was 6% less than for 1961 to 1982, while the ratio for 2001 to 2011 was 45.3% greater than for 1982 to 2001. The decadal variation in the fucoxanthin/peridinin ratio implies that dinoflagellate production had been gradually increasing until 2001. We suggest that the observed changes can be explained by anthropogenic impacts, such as nutrient loading and dam construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alheit J, Möllmann C, Dutz J, Kornilovs G, Loewe P, Mohrholz V, Wasmund N. 2005. Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science, 62 (7): 1205–1215.

    Article  Google Scholar 

  • Aneeshkumar N, Sujatha C H. 2012. Biomarker pigment signatures in Cochin back water system-A tropical estuary south west coast of India. Estuarine, Coastal and Shelf Science, 99: 182–190.

    Article  Google Scholar 

  • Appleby P G, Oldfield F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210 Pb to the sediment. Catena, 5 (1): 1–8.

    Article  Google Scholar 

  • Battarbee R, Grytnes J A, Thompson R, Appleby P G, Catalan J, Korhola A, Birks H J B, Heegaard E, Lami A. 2002. Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. Journal of Paleolimnology, 28 (1): 161–179.

    Article  Google Scholar 

  • Beaugrand G. 2009. Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas. Deep Sea Research Part II: Topical Studies in Oceanography, 56 (8-10): 656–673.

    Article  Google Scholar 

  • Chai C, Yu Z M, Song X X, Cao X H. 2006. The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent east China Sea, China. Hydrobiologia, 563 (1): 313–328.

    Article  Google Scholar 

  • Chen Y L L. 2000. Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Continental Shelf Research, 20 (4-5): 437–458.

    Article  Google Scholar 

  • Cheng F, Song X, Yu Z, Liu D. 2012b. Historical records of eutrophication in Changjiang (Yangtze) River estuary and its adjacent East China Sea. Biogeosciences, 9 (6): 6261–6291.

    Article  Google Scholar 

  • Cheng F, Yu Z, Song X. 2014. Long-term changes in sedimentary diatom assemblages and their environmental implications in the Changjiang (Yangtze) River estuary, China. Chinese Journal of Oceanology and Limnology, 32 (1): 155–161.

    Article  Google Scholar 

  • Cheng Z D, Gao Y H, Liu S C, Wang D Z, Chen C P, Liang J R, Li Y, Qi Y Z. 2013. Flora Algarum Marinarum Sinicarum: Tomus V. Bacillariophyta, NO. III Pennatae II, Naviculales, Naviculaceae, Cymbellaceae, Auriculaceae, Gomphonemaceae. Science Press, Beijing. 183p. (in Chinese).

    Google Scholar 

  • Cheng Z D, Gao Y H, Liu S C, Wang D Z, Chen C P, Liang J R, Qi Y Z. 2012a. Flora Algarum Marinarum Sinicarum: Tomus V. Bacillariophyta, No. II Pennatae I, Diatomales, Achnanthales, Phaeodactylales, Eunotiales. Science Press, Beijing. 137p. (in Chinese)

    Google Scholar 

  • Chiang K P, Chou Y H, Chang J, Gong G C. 2004. Winter distribution of diatom assemblages in the East China Sea. Journal of Oceanography, 60 (6): 1053–1062.

    Article  Google Scholar 

  • Chiba S, Saino T. 2003. Variation in mesozooplankton community structure in the Japan/East Sea (1991-1999) with possible influence of the ENSO scale climatic variability. Progress in Oceanography, 57 (3-4): 317–339.

    Article  Google Scholar 

  • de Young B, Harris R, Alheit J, Beaugrand G, Mantua N, Shannon L. 2004. Detecting regime shifts in the ocean: data considerations. Progress in Oceanography, 60 (2-4): 143–164.

    Article  Google Scholar 

  • Finkelstein S A, Gajewski K. 2007. A palaeolimnological record of diatom-community dynamics and late-Holocene climatic changes from Prescott Island, Nunavut, central Canadian Arctic. The Holocene, 17 (6): 803–812.

    Article  Google Scholar 

  • Furuya K, Hayashi M, Yabushita Y, Ishikawa A. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep Sea Research Part II: Topical Studies in Oceanography, 50 (2): 367–387.

    Article  Google Scholar 

  • Goericke R, Montoya J P. 1998. Estimating the contribution of microalgal taxa to chlorophyll a in the field-variations of pigment ratios under nutrient-and light-limited growth. Marine Ecology Progress Series, 169: 97–112.

    Article  Google Scholar 

  • Gong G C, Chang J, Chiang K P, Hsiung T M, Hung C C, Duan S W, Codispoti L A. 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the three gorges dam. Geophysical Research Letters, 33 (7): L07610.

    Article  Google Scholar 

  • Guenther M, Bozelli R. 2004. Effects of inorganic turbidity on the phytoplankton of an amazonian lake impacted by bauxite tailings. Hydrobiologia, 511 (1-3): 151–159.

    Article  Google Scholar 

  • Guo Y J, Qian S B. 1984. Flora Algarum Marinarum Sinicarum: Tomus. V. Bacillariophyta. Science Press, Beijing, China. (in Chinese)

    Google Scholar 

  • Hansen J L S, Josefson A B. 2003. Accumulation of algal pigments and live planktonic diatoms in aphotic sediments during the spring bloom in the transition zone of the North and Baltic Seas. Marine Ecology Progress Series, 248: 41–54.

    Article  Google Scholar 

  • Higgins H W, Mackey D J. 2000. Algal class abundances, estimated from chlorophyll and carotenoid pigments, in the western Equatorial Pacific under El Niño and non-El Niño conditions. Deep Sea Research Part I: Oceanographic Research Papers, 47 (8): 1461–1483.

    Article  Google Scholar 

  • Hill M O, Bunce R G H, Shaw M W. 1975. Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in scotland. The Journal of Ecology, 63 (2): 597–613.

    Article  Google Scholar 

  • Hill M O, Šmilauer P. 2005. TWINSPAN for Windows Version 2.3. Software and User Guide. Centre for Ecology and Hydrology & University of South Bohemia, Huntingdon, Ceske Budejovice.

    Google Scholar 

  • Hinder S L, Hays G C, Edwards M, Roberts E C, Walne A W, Gravenor M B. 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nature Climate Change, 2 (4): 271–275.

    Article  Google Scholar 

  • Huh C A, Su C C. 1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu. Marine Geology, 160 (1-2): 183–196.

    Article  Google Scholar 

  • Humborg C, Ittekkot V, Cociasu A, Bodungen B V. 1997. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature, 386 (6623): 385–388.

    Article  Google Scholar 

  • Jeffrey S W, Mantoura R F C, Wright S W. 1997. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. UNESCO Publishing, Paris.

    Google Scholar 

  • Jiao N Z, Zhang Y, Zeng Y H, Gardner W D, Mishonov A V, Richardson M J, Hong N, Pan D L, Yan X H, Jo Y H, Chen C T A, Wang P X, Chen Y Y, Hong H S, Bai Y, Chen X H, Huang B Q, Deng H, Shi Y, Yang D C. 2007. Ecological anomalies in the East China Sea: impacts of the Three Gorges Dam. Water Research, 41 (6): 1287–1293.

    Article  Google Scholar 

  • Jin D X, Cheng Z D, Lin J M, Liu S C. 1985. The Marine Benthic Diatoms in China. China Ocean Press, Springer-Verlag, Beijng, Berlin Heidelberg. 313p.

    Google Scholar 

  • Jin D X, Cheng Z D, Lin J M, Ma J H. 1992. The Marine Benthic Diatoms in China. China Ocean Press, Beijng. 437p. (in Chinese)

    Google Scholar 

  • Jin H Y, Chen J F, Weng H X et al. 2010. Variations in paleoproductivity and the environmental implications over the past six decades in the Changjiang Estuary. Acta Oceanologica Sinica, 29 (3): 38–45.

    Article  Google Scholar 

  • Jones V J, Birks H J B. 2004. Lake-sediment records of recent environmental change on Svalbard: results of diatom analysis. Journal of Paleolimnology, 31 (4): 445–466.

    Article  Google Scholar 

  • Kirk J T O. 1983. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Klais R, Tamminen T, Kremp A, Spilling K, Olli K. 2011. Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic sea spring bloom. PLoS One, 6 (6): e21567.

    Article  Google Scholar 

  • Kuwae M, Yamashita A, Hayami Y, Kaneda A, Sugimoto T, Inouchi Y, Amano A, Takeoka H. 2006. Sedimentary records of multidecadal-scale variability of diatom productivity in the Bungo Channel, Japan, associated with the Pacific Decadal Oscillation. Journal of Oceanography, 62 (5): 657–666.

    Article  Google Scholar 

  • Leavetti P R, Findlay D l. 1994. Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic lake 227, experimental lakes area, ontario. Canadian Journal of Fisheries and Aquatic Sciences, 51 (10): 2286–2299.

    Article  Google Scholar 

  • Leavitt P R. 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology, 9 (2): 109–127.

    Article  Google Scholar 

  • Lee H S, Yamashita T, Mishima T. 2012. Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Progress in Oceanography, 105: 67–80.

    Article  Google Scholar 

  • Leterme S C, Edwards M, Seuront L, Attrill M J, Reid P C, John A W G. 2005. Decadal basin-scale changes in diatoms, dinoflagellates, and phytoplankton color across the North Atlantic. Limnology and Oceanography, 50 (4): 1244–1253.

    Article  Google Scholar 

  • Li M, Xu K, Watanabe M, Chen Z. 2007. Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal and Shelf Science, 71 (1-2): 3–12.

    Article  Google Scholar 

  • Li X X, Bianchi T S, Yang Z S, Osterman L E, Allison M A, Di Marco S F, Yang G P. 2011. Historical trends of hypoxia in Changjiang River estuary: applications of chemical biomarkers and microfossils. Journal of Marine Systems, 86 (3-4): 57–68.

    Article  Google Scholar 

  • Lin Z D, Lu R Y. 2009. The ENSO’s effect on eastern China rainfall in the following early summer. Advances in Atmospheric Sciences, 26 (2): 333–342.

    Article  Google Scholar 

  • Liu C G, Wang J L, Feng J F, Peng S T. 2013. Effects of suspended particles on the growth of two dominant phytoplankton species of Bohai Bay, China. Marine Pollution Bulletin, 74 (1): 220–224.

    Article  Google Scholar 

  • McKee B A, Nittrouer C A, De Master D J. 1983. Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River. Geology, 11 (11): 631–633.

    Article  Google Scholar 

  • Milliman J D, Qin Y P, Park Y A. 1989. Sediment and sedimentary processes in the Yellow and East China Seas. In: Taira A, Masunda A eds. Sedimentary Facies in the Active Plate Margin. Terra Scientific Publishing Company, Tokyo. p.233–249.

    Google Scholar 

  • Montes-Hugo M, Doney S C, Ducklow H W, Fraser W, Martinson D, Stammerjohn S E, Schofield O. 2009. Recent changes in phytoplankton communities associated with rapid regional climate change along the Western Antarctic Peninsula. Science, 323 (5920): 1470–1473.

    Article  Google Scholar 

  • Oertel G F, Dunstan W M. 1981. Suspended-sediment distribution and certain aspects of phytoplankton production offGeorgia, U.S.A. Marine Geology, 40 (1-2): 171–197.

    Article  Google Scholar 

  • Randall J M, Day Jr J W. 1987. Effects of river discharge and vertical circulation on aquatic primary production in a turbid Louisiana (USA) estuary. Netherlands Journal of Sea Research, 21 (3): 231–242.

    Article  Google Scholar 

  • Renberg I. 1990. A procedure for preparing large sets of diatom slides from sediment cores. Journal of Paleolimnology, 4 (1): 87–90.

    Article  Google Scholar 

  • Rivkin R B, Swift E. 1985. Phosphorus metabolism of oceanic dinoflagellates: phosphate uptake, chemical composition and growth of Pyrocystis noctiluca. Marine Biology, 88 (2): 189–198.

    Article  Google Scholar 

  • Romero-Viana L, Keely B J, Camacho A, Vicente E, Rosa Miracle M. 2009. Photoautotrophic community changes in Lagunillo del Tejo (Spain) in response to lake level fluctuation: two centuries of sedimentary pigment records. Organic Geochemistry, 40 (3): 376–386.

    Article  Google Scholar 

  • Round F E, Crawford R M, Mann D G. 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schrader H J, Gersonde R. 1978. Diatoms and silicoflagellates. In: Zachariasse W J ed. Micropaleontological Counting Methods and Techniques-An Exercise of an Eight Metres Section of the Lower Pliocene of Cap Rossello. Utrecht Micropaleontology Bulletin, Sicily. p.129–176.

    Google Scholar 

  • Schüller S E, Savage C. 2011. Spatial distribution of diatom and pigment sedimentary records in surface sediments in Doubtful Sound, Fiordland, New Zealand. New Zealand Journal of Marine and Freshwater Research, 45 (4): 591–608.

    Article  Google Scholar 

  • Smayda T J. 2002. Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. Journal of Oceanography, 58 (2): 281–294.

    Article  Google Scholar 

  • Song S Q, Sun J, Luan Q S, Shen Z L. 2008. Size-fractionated phytoplankton biomass in autumn of the Changjiang (Yangtze) River Estuary and its adjacent waters after the Three Gorges Dam construction. Chinese Journal of Oceanology and Limnology, 26 (3): 268–275.

    Article  Google Scholar 

  • Su C C, Huh C A. 2002. 210Pb, 137Cs and 239, 240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Marine Geology, 183 (1-4): 163–178.

    Article  Google Scholar 

  • Sugimoto T, Tadokoro K. 1997. Interannual-interdecadal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. Fisheries Oceanography, 6 (2): 74–93.

    Article  Google Scholar 

  • Van De Poll W H, Van Leeuwe M A, Roggeveld J, Buma A G J. 2005. Nutrient limitation and high irradiance acclimation reduce par and uv-induced viability loss in the antarctic diatom chaetoceros brevis (bacillariophyceae). Journal of Phycology, 41 (4): 840–850.

    Article  Google Scholar 

  • Verleyen E, Hodgson D A, Leavitt P R, Sabbe K, Vyverman W. 2004. Quantifying habitat-specific diatom production: a critical assessment using morphological and biogeochemical markers in Antarctic marine and lake sediments. Limnology and Oceanography, 49 (4): 1528–1539.

    Article  Google Scholar 

  • Wang H J, Saito Y, Zhang Y, Bi N S, Sun X X, Yang Z S. 2011. Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia. Earth-Science Reviews, 108 (1-2): 80–100.

    Article  Google Scholar 

  • Wang K. 2007. The distribution of nutrients, nutritional support of nitrogen and its eutrophication effects in Changjiang Estuary and adjacent area. The Second Institute of Oceanography, Soa, Hangzhou. 45p. (in Chinese with English abstract)

    Google Scholar 

  • Weckström K, Juggins S. 2006. Coastal diatom-environment relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology, 42 (1): 21–35.

    Article  Google Scholar 

  • Welschmeyer N A, Lorenzen C J. 1985. Role of herbivory in controlling phytoplankton abundance: annual pigment budget for a temperate marine fjord. Marine Biology, 90 (1): 75–86.

    Article  Google Scholar 

  • Wooster W S, Zhang C I. 2004. Regime shifts in the North Pacific: early indications of the 1976-1977 event. Progress in Oceanography, 60 (2-4): 183–200.

    Article  Google Scholar 

  • Yang Z, Wang H, Saito Y, Milliman J D, Xu K, Qiao S, Shi G. 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resources Research, 42 (4): W04407.

    Article  Google Scholar 

  • Yoder J A, Atkinson L P, Stephen Bishop S, Hofmann E E, Lee T N. 1983. Effect of upwelling on phytoplankton productivity of the outer southeastern United States continental shelf. Continental Shelf Research, 1 (4): 385–404.

    Article  Google Scholar 

  • Yoder J. 1985. Environmental control of phytoplankton production on the southeastern U.S. continental shelf. In: Atkinson L P, Menzel D W, Bush K A eds. Oceanography of the Southeastern U.S. Continental Shelf. American Geophysical Union, Washington. p.93–103.

    Chapter  Google Scholar 

  • Zapatal M, Rodríguezl F, Garrido J L. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C 8 column and pyridine-containing mobile phases. Marine Ecology Progress Series, 195: 29–45.

    Article  Google Scholar 

  • Zhang C I, Gong Y. 2005. Effect of ocean climate changes on the Korean stock of Pacific saury, Cololabis saira (Brevoort). Journal of Oceanography, 61 (2): 313–325.

    Article  Google Scholar 

  • Zhang W C, Li H B, Xiao T, Zhang J, Li C L, Sun S. 2006. Impact of microzooplankton and copepods on the growth of phytoplankton in the Yellow Sea and East China Sea. Hydrobiologia, 553 (1): 357–366.

    Article  Google Scholar 

  • Zhou L B, Tan Y H, Huang L M, Huang J M, Huang J R, Liu H X, Lian X P. 2011. Phytoplankton growth and microzooplankton grazing in the continental shelf area of northeastern South China Sea after Typhoon Fengshen. Continental Shelf Research, 31 (16): 1663–1671.

    Article  Google Scholar 

  • Zhou M, Shen Z L, Yu R C. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Research, 28 (12): 1483–1489.

    Article  Google Scholar 

  • Zhu Z Y, Ng W M, Liu S M, Zhang J, Chen J C, Wu Y. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science, 84 (3): 393–401.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Gao  (高亚辉).

Additional information

Supported by the National Key Research and Development Program of China (No. 2016YFA0601302) and the National Natural Science Foundation of China (Nos. 41476116, 41276128)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abate, R., Gao, Y., Chen, C. et al. Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China. Chin. J. Ocean. Limnol. 35, 1374–1386 (2017). https://doi.org/10.1007/s00343-017-6029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-6029-1

Keywords

Navigation