Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1482–1492 | Cite as

Evaluation of removal of the size effect using data scaling and elliptic Fourier descriptors in otolith shape analysis, exemplified by the discrimination of two yellow croaker stocks along the Chinese coast

  • Bo Zhao (赵博)
  • Jinhu Liu (刘金虎)
  • Junjie Song (宋骏杰)
  • Liang Cao (曹亮)
  • Shuozeng Dou (窦硕增)
Aquaculture and Fisheries


Removal of the length effect in otolith shape analysis for stock identification using length scaling is an important issue; however, few studies have attempted to investigate the effectiveness or weakness of this methodology in application. The aim of this study was to evaluate whether commonly used size scaling methods and normalized elliptic Fourier descriptors (NEFDs) could effectively remove the size effect of fish in stock discrimination. To achieve this goal, length groups from two known geographical stocks of yellow croaker, Larimichthys polyactis, along the Chinese coast (five groups from the Changjiang River estuary of the East China Sea and three groups from the Bohai Sea) were subjected to otolith shape analysis. The results indicated that the variation of otolith shape caused by intra-stock fish length might exceed that due to inter-stock geographical separation, even when otolith shape variables are standardized with length scaling methods. This variation could easily result in misleading stock discrimination through otolith shape analysis. Therefore, conclusions about fish stock structure should be carefully drawn from otolith shape analysis because the observed discrimination may primarily be due to length effects, rather than differences among stocks. The application of multiple methods, such as otoliths shape analysis combined with elemental fingering, tagging or genetic analysis, is recommended for sock identification.


otolith shape analysis data scaling for fish length stock discrimination removal of length effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material


  1. Begg G A, Brown R W. 2000. Stock identification of haddock Melanogrammus aeglefinus on Georges bank based on otolith shape analysis. Trans. Am. Fish. Soc., 129(4): 935–945.CrossRefGoogle Scholar
  2. Begg G A, Waldman J R. 1999. An holistic approach to fish stock identification. Fish. Res., 43(1-3): 35–44.CrossRefGoogle Scholar
  3. Bentzen P, Taggart C T, Ruzzante D E, Cook D. 1996. Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the northwest Atlantic. Can. J. Fish. Aquat. Sci., 53(12): 2706–2721.CrossRefGoogle Scholar
  4. Bolles K L, Begg G A. 2000. Distinction between silver hake (Merluccius bilinearis) stocks in U. S. waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull., 98(3): 451–462.Google Scholar
  5. Burke N, Brophy D, King P A. 2008. Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations. Fish. Res., 91(2-3): 133–143.CrossRefGoogle Scholar
  6. Campana S E, Casselman J M. 1993. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci., 50(5): 1062–1083.CrossRefGoogle Scholar
  7. Campana S E. 1999. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser., 188: 263–297.CrossRefGoogle Scholar
  8. Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci., 61(2): 158–167.CrossRefGoogle Scholar
  9. Castonguay M, Simard P, Gagnon P. 1991. Usefulness of Fourier analysis of otolith shape for atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci., 48(2): 296–302.CrossRefGoogle Scholar
  10. Crampton J S. 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia, 28(2): 179–186.CrossRefGoogle Scholar
  11. De Vries D A, Grimes C B, Prager M H. 2002. Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fish. Res., 57(1): 51–62.CrossRefGoogle Scholar
  12. Dou S Z, Yu X, Cao L. 2012. Otolith shape analysis and its application in fish stock discrimination: a case study. Oceanol. Limnol. Sin., 43(4): 702–712. (in Chinese with English abstract)Google Scholar
  13. Guo X P, Jin X S, Dai F Q. 2006. Growth variations of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Bohai Sea. J. Fish. Sci. China, 13(2): 243–249. (in Chinese with English abstract)Google Scholar
  14. Jin X S. 1996. Ecology and population dynamics of small yellow croaker (Pseudosciaena polyactis Bleeker) in the Yellow Sea. J. Fish. Sci. China, 3(1): 32–46. (in Chinese with English abstract)Google Scholar
  15. Legua J, Plaza G, Perez D, Arkhipkin A. 2013. Otolith shape analysis as a tool for stock identification of the southern blue whiting, Micromesistius australis. Lat. Am. J. Aquat. Res., 41(3): 479–489.Google Scholar
  16. Lleonart J, Salat J, Torres G J. 2000. Removing allometric effects of body size in morphological analysis. J. Theor. Biol., 205(1): 85–93.CrossRefGoogle Scholar
  17. Lombarte A, Lleonart J. 1993. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fishes, 37(3): 297–306.CrossRefGoogle Scholar
  18. Longmore C, Fogarty K, Neat F, Brophy D, Trueman C, Milton A, Mariani S. 2010. A comparison of otolith microchemistry and otolith shape analysis for the study of spatial variation in a deep-sea teleost, Coryphaenoides rupestris. Environ. Biol. Fishes, 89(3-4): 591–605.CrossRefGoogle Scholar
  19. Meng Z N, Zhuang Z M, Jin X S, Tang Q S, Su Y Q. 2003. Genetic diversity in small yellow croaker (Pseudosciaena polyactis) by RAPD analysis. Biodiv. Sci., 11(3): 197–203. (in Chinese with English abstract)Google Scholar
  20. Neves A, Sequeira V, Farias I, Vieira A R, Paiva R, Gordo L S. 2011. Discriminating bluemouth, Helicolenus dactylopterus (Pisces: Sebastidae), stocks in Portuguese waters by means of otolith shape analysis. J. Mar. Biol. Assoc. U. K., 91(6): 1237–1242.CrossRefGoogle Scholar
  21. Smith R J. 1984. Allometric scaling in comparative biology: problems of concept and method. Am. J. Physiol., 246 (2): R152–R160.Google Scholar
  22. Smith S J, Campana S E. 2010. Integrated stock mixture analysis for continous and categorical data, with application to genetic-otolith combinations. Can. J. Fish. Aquat. Sci., 67(10): 1533–1548.CrossRefGoogle Scholar
  23. Thalib L, Kitching R L, Bhatti M I. 1999. Principal component analysis for grouped data—A case study. Environmetrics, 10(5): 565–574.CrossRefGoogle Scholar
  24. Thresher R E. 1999. Elemental composition of otoliths as a stock delineator in fishes. Fish. Res., 43(1-3): 165–204.CrossRefGoogle Scholar
  25. Torres G J, Lombarte A, Morales-Nin B. 2000. Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius. J. Mar. Biol. Assoc. U. K., 80(2): 333–342.CrossRefGoogle Scholar
  26. Tracey S R, Lyle J M, Duhamel G. 2006. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res., 77(2): 138–147.CrossRefGoogle Scholar
  27. Tuset V M, Lombarte A, González J A, Pertusa J F, Lorente M. 2003. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish Biol., 63(6): 1491–1504.CrossRefGoogle Scholar
  28. Xiao Y S, Zhang Y, Gao T X, Yanagimoto T, Yabe M, Sakurai Y. 2009. Genetic diversity in the mtDNA control region and population structure in the small yellow croaker Larimichthys polyactis. Environ. Biol. Fishes, 85(4): 303–314.CrossRefGoogle Scholar
  29. Xu Z L, Chen J J. 2010. Population division of Larimichthys polyactis in China Sea. Chin. J. Appl. Ecol, 21(11): 2856–2864. (in Chinese with English abstract)Google Scholar
  30. Ye C C. 1991. Small yellow croaker (Larimichthys polyactis). In: Deng J Y, Zhao C Y eds. Marine Fisheries Biology. China Agriculture Press, Beijing, China. p.164–200. (in Chinese)Google Scholar
  31. Yu X, Cao L, Liu J H, Zhao B, Shan X J, Dou S Z. 2014. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: Gobiidae) in the northern Chinese coastal waters. Chin. J. Oceanol. Limnol., 32(5): 1060–1073.CrossRefGoogle Scholar
  32. Zhang C, Ye Z J, Wan R, Ma Q Y, Li Z G. 2014. Investigating the population structure of small yellow croaker (Larimichthys polyactis) using internal and external features of otoliths. Fish. Res., 153: 41–47.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bo Zhao (赵博)
    • 1
    • 2
  • Jinhu Liu (刘金虎)
    • 1
  • Junjie Song (宋骏杰)
    • 1
    • 2
  • Liang Cao (曹亮)
    • 1
  • Shuozeng Dou (窦硕增)
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Marine Ecology and Environmental ScienceQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations