Advertisement

Chinese Journal of Oceanology and Limnology

, Volume 35, Issue 6, pp 1275–1286 | Cite as

Three-dimensional numerical simulation of internal tides that radiated from the Luzon Strait into the Western Pacific

  • Kun Liu (刘昆)
  • Zhenhua Xu (徐振华)
  • Baoshu Yin (尹宝树)
Physics
  • 134 Downloads

Abstract

Recent satellite altimeter observations have indicated that internal tides (ITs) from the Luzon Strait (LS) propagate more than 2 500 km into the Western Pacific (WP). This study used a high-resolution three-dimensional numerical model to reproduce and examine the ITs radiation process. The propagation of diurnal and semidiurnal ITs showed different patterns and variations. Diurnal ITs with lower frequency were affected more by the earth’s rotation and they were bent more toward the equator than semidiurnal ITs. ITs phase speeds are functions of latitude and diurnal ITs showed greater distinctions of phase speeds during propagation. For M2 ITs, the wavelength remained nearly unchanged but the beam width increased significantly during propagation away from the LS. For diurnal ITs (K1 and O1), the wavelength decreased noticeably with latitude, while the beam width varied little during propagation because of blocking by land. Baroclinic energy was also examined as a complement to satellite results reported by Zhao (2014). The magnitude of the generated baroclinic energy flux reduced remarkably within 300 km from the generation site but it then decayed slowly when propagating into abyssal sea. Baroclinic energy of diurnal ITs was found to dissipate at a slower rate than semidiurnal ITs along the main propagation path in the WP.

Keywords

internal tides numerical simulation Luzon Strait Western Pacific 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford M H, MacKinnon J A, Nash J D et al. 2011. Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr., 41(11): 2211–2222.CrossRefGoogle Scholar
  2. Alford M H, Peacock T, MacKinnon J A et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69.CrossRefGoogle Scholar
  3. Beardsley R C, Duda T F, Lynch J F et al. 2004. Barotropic tide in the northeast South China Sea. IEEE J. Oceanic Eng., 29(4): 1075–1086.CrossRefGoogle Scholar
  4. Buijsman M C, Klymak J, Legg S et al. 2013. Threedimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44(3): 850–869.CrossRefGoogle Scholar
  5. Cacchione D A, Pratson L F, Ogston A S. 2002. The shaping of continental slopes by internal tides. Science, 296(5568): 724–727.CrossRefGoogle Scholar
  6. Cai S Q, Chen R Y, Qiu Z. 2000. Numerical study about influence of bottom topographic change on generation of internal tide. Journal of Oceanography in Taiwan Strait, 19(1): 74–81. (in Chinese with English abstract)Google Scholar
  7. Carter G S, Fringer O B, Zaron E D. 2012. Regional models of internal tides. Oceanography, 25(2): 56–65.CrossRefGoogle Scholar
  8. Carter G S, Merrifield M A, Becher J M et al. 2008. Energetics of M 2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38(10): 2205–2223.CrossRefGoogle Scholar
  9. Chapman D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15(8): 1060–1075.CrossRefGoogle Scholar
  10. Cummins P F, Oey L Y. 1997. Simulation of barotropic and baroclinic tides offNorthern British Columbia. J. Phys. Oceanogr., 27(5): 762–781.CrossRefGoogle Scholar
  11. Di Lorenzo E, Young W R, Smith S L. 2006. Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36(6): 1072–1084.CrossRefGoogle Scholar
  12. Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Tech n ol., 1 9(2): 183–204.CrossRefGoogle Scholar
  13. Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778.CrossRefGoogle Scholar
  14. Fan Z S, Zhang Y L, Song M. 2008. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: ?. Simulation of SAR signatures of internal solitary waves. Acta Oceanologica Sinica, 27(5): 36–48.Google Scholar
  15. Flather R A. 1976. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege, 10(6): 141–164.Google Scholar
  16. Garrett C. 2003. Internal tides and ocean mixing. Science, 301(5641): 1858–1859.Google Scholar
  17. Hsin Y C, Wu C R, Chao S Y. 2012. An updated examination of the Luzon Strait transport. J. Geophys. Res., 117 (C3): C03022.CrossRefGoogle Scholar
  18. Jan S, Lien R C, Ting C H. 2008. Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64(5): 789–802.CrossRefGoogle Scholar
  19. Kang D J, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42(2): 272–290.CrossRefGoogle Scholar
  20. Kerry C G, Powell B S, Carter G S. 2013. Effects of remote generation sites on model estimates of M 2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43(1): 187–204.CrossRefGoogle Scholar
  21. Liao G H, Yuan Y C, Yang C H et al. 2012. Current observations of internal tides and parametric subharmonic instability in Luzon Strait. Atmosphere -Ocean, 50 (S1): 59–76.CrossRefGoogle Scholar
  22. Liu A K, Chang Y S, Hsu M K et al. 1998. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103 (C4): 7995–8008, http://dx. doi.org/10.1029/97JC01918.CrossRefGoogle Scholar
  23. Liu A K, Su F C, Hsu M K et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Cont. Shelf Res., 59: 18–27, http://dx.doi.org/10.1016/j.csr.2013.02.009.CrossRefGoogle Scholar
  24. Ma B B, Lien R C, Ko D S. 2013. The variability of internal tides in the Northern South China Sea. J. Oceanogr., 69(5): 619–630.CrossRefGoogle Scholar
  25. Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20(4): 851–875.CrossRefGoogle Scholar
  26. Merrifield M A, Holloway P E. 2002. Model estimates of M 2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 (C8): 5–1-5-12.CrossRefGoogle Scholar
  27. Miao C B, Chen H B, Lü X Q. 2011. An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin. J. Oceanol. Limonol., 29(6): 1339–1356.CrossRefGoogle Scholar
  28. Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M 2 internal tides in the East China Sea. J. Geophys. Res., 109 (C4): C04027.CrossRefGoogle Scholar
  29. Niwa Y, Hibiya T. 2011. Estimation of baroclinic tide energy available for deep ocean mixing based on threedimensional global numerical simulations. J. Oceanogr., 67(4): 493–502.CrossRefGoogle Scholar
  30. Rainville L, Johnston T M S, Carter G S et al. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40(2): 311–325.CrossRefGoogle Scholar
  31. Ray R D, Cartwright D E. 2001. Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: central North Pacific. Geophys. Res. Lett., 28(7): 1259–1262.CrossRefGoogle Scholar
  32. Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404.CrossRefGoogle Scholar
  33. Shriver J F, Arbic B K, Richman J G et al. 2012. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117 (C10): C10024.CrossRefGoogle Scholar
  34. Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Res. Part II Top. Stud. Oceanogr., 51(25-26): 3043–3068.CrossRefGoogle Scholar
  35. Tian J W, Zhou L, Zhang X Q et al. 2003. Estimates of M 2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30(17): 1889.CrossRefGoogle Scholar
  36. Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1): 72–86.CrossRefGoogle Scholar
  37. Xu Z H, Yin B S, Hou Y J et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J. Geophys. Res., 118(1): 197–211.CrossRefGoogle Scholar
  38. Xu Z H, Yin B S, Hou Y J et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134: 101–112.CrossRefGoogle Scholar
  39. Xu Z H, Yin B S, Hou Y J. 2010. Highly nonlinear internal solitary waves over the continental shelf of the northwestern South China Sea. Chin. J. Oceanol. Limonol., 28(5): 1049–1054.CrossRefGoogle Scholar
  40. Xu Z H, Yin B S, Hou Y J. 2011. Multimodal structure of the internal tides on the continental shelf of the northwestern South China Sea. Estuarine, Coastal and Shelf Science, 95(1): 178–185.CrossRefGoogle Scholar
  41. Xu Z H, Yin B S, Yang H W et al. 2012. Depression and elevation internal solitary waves in a two-layer fluid and their forces on cylindrical piles. Chin. J. Oceanol. Limonol, 30(4): 703–712.CrossRefGoogle Scholar
  42. Zhao Z X, Klemas V, Zheng Q A et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31 (6): L06302.CrossRefGoogle Scholar
  43. Zhao Z X. 2014. Internal tide radiation from the Luzon Strait. J. Geophys. Res., 119(8): 5434–5448.CrossRefGoogle Scholar

Copyright information

© Chinese Society for Oceanology and Limnology, Science Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kun Liu (刘昆)
    • 1
    • 2
    • 4
  • Zhenhua Xu (徐振华)
    • 1
    • 2
    • 3
  • Baoshu Yin (尹宝树)
    • 1
    • 2
    • 3
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Key Laboratory of Ocean Circulation and Waves (KLOCAW)Chinese Academy of SciencesQingdaoChina
  3. 3.Laboratory for Ocean and Climate DynamicsQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations