Skip to main content
Log in

Three-dimensional numerical simulation of internal tides that radiated from the Luzon Strait into the Western Pacific

  • Physics
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

Recent satellite altimeter observations have indicated that internal tides (ITs) from the Luzon Strait (LS) propagate more than 2 500 km into the Western Pacific (WP). This study used a high-resolution three-dimensional numerical model to reproduce and examine the ITs radiation process. The propagation of diurnal and semidiurnal ITs showed different patterns and variations. Diurnal ITs with lower frequency were affected more by the earth’s rotation and they were bent more toward the equator than semidiurnal ITs. ITs phase speeds are functions of latitude and diurnal ITs showed greater distinctions of phase speeds during propagation. For M2 ITs, the wavelength remained nearly unchanged but the beam width increased significantly during propagation away from the LS. For diurnal ITs (K1 and O1), the wavelength decreased noticeably with latitude, while the beam width varied little during propagation because of blocking by land. Baroclinic energy was also examined as a complement to satellite results reported by Zhao (2014). The magnitude of the generated baroclinic energy flux reduced remarkably within 300 km from the generation site but it then decayed slowly when propagating into abyssal sea. Baroclinic energy of diurnal ITs was found to dissipate at a slower rate than semidiurnal ITs along the main propagation path in the WP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford M H, MacKinnon J A, Nash J D et al. 2011. Energy flux and dissipation in Luzon Strait: two tales of two ridges. J. Phys. Oceanogr., 41(11): 2211–2222.

    Article  Google Scholar 

  • Alford M H, Peacock T, MacKinnon J A et al. 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69.

    Article  Google Scholar 

  • Beardsley R C, Duda T F, Lynch J F et al. 2004. Barotropic tide in the northeast South China Sea. IEEE J. Oceanic Eng., 29(4): 1075–1086.

    Article  Google Scholar 

  • Buijsman M C, Klymak J, Legg S et al. 2013. Threedimensional double-ridge internal tide resonance in Luzon Strait. J. Phys. Oceanogr., 44(3): 850–869.

    Article  Google Scholar 

  • Cacchione D A, Pratson L F, Ogston A S. 2002. The shaping of continental slopes by internal tides. Science, 296(5568): 724–727.

    Article  Google Scholar 

  • Cai S Q, Chen R Y, Qiu Z. 2000. Numerical study about influence of bottom topographic change on generation of internal tide. Journal of Oceanography in Taiwan Strait, 19(1): 74–81. (in Chinese with English abstract)

    Google Scholar 

  • Carter G S, Fringer O B, Zaron E D. 2012. Regional models of internal tides. Oceanography, 25(2): 56–65.

    Article  Google Scholar 

  • Carter G S, Merrifield M A, Becher J M et al. 2008. Energetics of M 2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38(10): 2205–2223.

    Article  Google Scholar 

  • Chapman D C. 1985. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15(8): 1060–1075.

    Article  Google Scholar 

  • Cummins P F, Oey L Y. 1997. Simulation of barotropic and baroclinic tides offNorthern British Columbia. J. Phys. Oceanogr., 27(5): 762–781.

    Article  Google Scholar 

  • Di Lorenzo E, Young W R, Smith S L. 2006. Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36(6): 1072–1084.

    Article  Google Scholar 

  • Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Tech n ol., 1 9(2): 183–204.

    Article  Google Scholar 

  • Egbert G D, Ray R D. 2000. Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405(6788): 775–778.

    Article  Google Scholar 

  • Fan Z S, Zhang Y L, Song M. 2008. A study of SAR remote sensing of internal solitary waves in the north of the South China Sea: ?. Simulation of SAR signatures of internal solitary waves. Acta Oceanologica Sinica, 27(5): 36–48.

    Google Scholar 

  • Flather R A. 1976. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege, 10(6): 141–164.

    Google Scholar 

  • Garrett C. 2003. Internal tides and ocean mixing. Science, 301(5641): 1858–1859.

    Google Scholar 

  • Hsin Y C, Wu C R, Chao S Y. 2012. An updated examination of the Luzon Strait transport. J. Geophys. Res., 117 (C3): C03022.

    Article  Google Scholar 

  • Jan S, Lien R C, Ting C H. 2008. Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64(5): 789–802.

    Article  Google Scholar 

  • Kang D J, Fringer O. 2012. Energetics of barotropic and baroclinic tides in the Monterey Bay area. J. Phys. Oceanogr., 42(2): 272–290.

    Article  Google Scholar 

  • Kerry C G, Powell B S, Carter G S. 2013. Effects of remote generation sites on model estimates of M 2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43(1): 187–204.

    Article  Google Scholar 

  • Liao G H, Yuan Y C, Yang C H et al. 2012. Current observations of internal tides and parametric subharmonic instability in Luzon Strait. Atmosphere -Ocean, 50 (S1): 59–76.

    Article  Google Scholar 

  • Liu A K, Chang Y S, Hsu M K et al. 1998. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res., 103 (C4): 7995–8008, http://dx. doi.org/10.1029/97JC01918.

    Article  Google Scholar 

  • Liu A K, Su F C, Hsu M K et al. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Cont. Shelf Res., 59: 18–27, http://dx.doi.org/10.1016/j.csr.2013.02.009.

    Article  Google Scholar 

  • Ma B B, Lien R C, Ko D S. 2013. The variability of internal tides in the Northern South China Sea. J. Oceanogr., 69(5): 619–630.

    Article  Google Scholar 

  • Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20(4): 851–875.

    Article  Google Scholar 

  • Merrifield M A, Holloway P E. 2002. Model estimates of M 2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 (C8): 5–1-5-12.

    Article  Google Scholar 

  • Miao C B, Chen H B, Lü X Q. 2011. An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin. J. Oceanol. Limonol., 29(6): 1339–1356.

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2004. Three-dimensional numerical simulation of M 2 internal tides in the East China Sea. J. Geophys. Res., 109 (C4): C04027.

    Article  Google Scholar 

  • Niwa Y, Hibiya T. 2011. Estimation of baroclinic tide energy available for deep ocean mixing based on threedimensional global numerical simulations. J. Oceanogr., 67(4): 493–502.

    Article  Google Scholar 

  • Rainville L, Johnston T M S, Carter G S et al. 2010. Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40(2): 311–325.

    Article  Google Scholar 

  • Ray R D, Cartwright D E. 2001. Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: central North Pacific. Geophys. Res. Lett., 28(7): 1259–1262.

    Article  Google Scholar 

  • Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347–404.

    Article  Google Scholar 

  • Shriver J F, Arbic B K, Richman J G et al. 2012. An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117 (C10): C10024.

    Article  Google Scholar 

  • Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Res. Part II Top. Stud. Oceanogr., 51(25-26): 3043–3068.

    Article  Google Scholar 

  • Tian J W, Zhou L, Zhang X Q et al. 2003. Estimates of M 2 internal tide energy fluxes along the margin of Northwestern Pacific using TOPEX/POSEIDON altimeter data. Geophys. Res. Lett., 30(17): 1889.

    Article  Google Scholar 

  • Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1): 72–86.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J et al. 2013. Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J. Geophys. Res., 118(1): 197–211.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J et al. 2014. Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J. Mar. Syst., 134: 101–112.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J. 2010. Highly nonlinear internal solitary waves over the continental shelf of the northwestern South China Sea. Chin. J. Oceanol. Limonol., 28(5): 1049–1054.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Hou Y J. 2011. Multimodal structure of the internal tides on the continental shelf of the northwestern South China Sea. Estuarine, Coastal and Shelf Science, 95(1): 178–185.

    Article  Google Scholar 

  • Xu Z H, Yin B S, Yang H W et al. 2012. Depression and elevation internal solitary waves in a two-layer fluid and their forces on cylindrical piles. Chin. J. Oceanol. Limonol, 30(4): 703–712.

    Article  Google Scholar 

  • Zhao Z X, Klemas V, Zheng Q A et al. 2004. Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31 (6): L06302.

    Article  Google Scholar 

  • Zhao Z X. 2014. Internal tide radiation from the Luzon Strait. J. Geophys. Res., 119(8): 5434–5448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Xu  (徐振华).

Additional information

Supported by the National Natural Science Foundation of China (Nos. 41528601, 41376029, U1406401, 41421005), the Strategic Pioneering Research Program of CAS (Nos. XDA10020104, XDA10020101), and the CAS Interdisciplinary Innovation Team “Ocean Mesoscale Dynamical Processes and ecological effect”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Xu, Z. & Yin, B. Three-dimensional numerical simulation of internal tides that radiated from the Luzon Strait into the Western Pacific. Chin. J. Ocean. Limnol. 35, 1275–1286 (2017). https://doi.org/10.1007/s00343-017-5376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-017-5376-2

Keywords

Navigation